Practical Attacks on Proximity Identification Systems

Gerhard P. Hancke

May 26, 2006

Practical Attacks on Proximity Identification Systems - p. 1

RFID Devices

- Applications
 - Logistics
 - Access control
 - ICAO e-Passport
 - Europay/Mastercard/Visa
- Standards
 - Frequency
 - Data encoding
 - Range

Security Concerns

- Various attacks proposed
 - Kfir and Wool (2005)
- Prominent media claims
 - ACLU read 'similar' RFID to e-passport at 1 m
 - NIST read e-passport RFID at 9 m
 - DEFCON eavesdropped RFID at 20 m
- Confusion ??
 - RFID type
 - Definition of distances
 - Experimental setup

Attack Overview

- Proof of Concept
 - What can actually be implemented?
 - Left room for improvement...
- Attacks
 - Passive Eavesdropping
 - Active Scanning (or skimming)
 - Relay Attacks

"Proximity" Identification

- ISO 14443 A (and B)
- 13.56 MHz
- - Modified Miller, 106 kbps
 - **•** 100% ASK
 - Token \rightarrow Reader
 - Manchester, 106 kbps
 - ASK modulated subcarrier
 - Load modulation

Passive Eavesdropping

- An attacker can eavesdrop a two-way communication sequence from distance d_E
- Further considerations
 - $d_{R \to T}$, Reader \to Token communication
 - $d_{T \rightarrow R}$, Token \rightarrow Reader communication

Passive Eavesdropping: Setup

RFID Reader

- 14443 A compatible reader
- Philips MF RC530
- 60x45 mm loop antenna

H-field Antenna

- Dynamic Sciences R-1250
 Wide Range receiver
- Antenna: 10 MHz 30 MHz

Passive Eavesdropping: Results

 ${}^{~}$ $d_E=$ 110 cm

- Simple comparator used

- $d_E =$ 400 cm
- **9** Bit errors in data. $d_E > 400$ cm

Active Scanning

- \blacksquare d_p , power and communicate with the token
- \bullet d_e , recover the token's response
- The attacker controls Reader \rightarrow Token communication

Active Scanning: Setup

- Same reader as passive eavesdropping
- Simple matched loop antennas (A5, A4, A3)
- E-type amplifier (0.5 W, 1 W, 2 W, 4 W)
 - Attacker's antenna same system used for passive eavesdropping

Active Scanning: Reader to Token

	0.5 W	1 W	2 W	4 W
A5 (1/32 m ²)	15 cm	16 cm	17 cm	19 cm
A4 (1/16 m ²)	20 cm	23 cm	23 cm	25 cm
A3 (1/8 m ²)	22 cm	25 cm	26 cm	27 cm

- Used a pick-up coil close go token to verify that it was responding
- \bullet d_p is proportional to the antenna radius/transmitted power
- Just increasing the power for a given antenna will eventually yield no additional distance

Active Scanning: Token to Attacker

Example of load modulation

- Best result not given by largest antenna and amplifier
 - Increased carrier amplitude complicates recovering the token's response
 - Load modulation amplitude not proportional to carrier

Active Scanning: Results

- A5 antenna with 1 W amplifier
- $d_p = 15 \text{ cm and } d_e = 75 \text{ cm}$
- Active scanning not as simple

- A5 antenna with 1 W amplifier
- \checkmark $d_p = 15 \text{ cm} \text{ and } d_e = 145 \text{ cm}$
- Still viable attack

Relay attack

Data passes through attacker's hardware en route between token and reader

Relay attack implications

- Location Spoofing
 - Attacker uses a valid token in a remote location to gain services
 - Circumvents application layer security protocols
- Data Modification
 - Data is altered on its way between the token and reader

Relay attack: Setup

Proxy Token

- 14443 A/B test card circuit
- Signal processing with discrete components
- Duplex RF link

Proxy Reader

- Commercial reader module
- Reprogrammed with our firmware
- **Price** \approx \$ 100

Relay attack: Results

- Location Spoofing
 - Data relayed over a distance of 50 m
- Data Modification
 - Same experimental setup as before except RF link substituted with FPGA development board
 - Modification of plaintext data, e.g. Token ID
 - Modification of encrypted data
 - One commercial product had an interesting result
 - 1 bit error in ciphertext \rightarrow 1 bit error in plaintext
 - Integrity provided by a CRC which could be modified

Conclusion

Passively eavesdropped up to 4 m without much effort

- Token \rightarrow Reader communication the limiting factor
- Not enough data yet to refute or confirm media claims
- Active scanning, powered token from 15 cm and retrieved response from 145 cm
 - Two antenna attack yield better results
 - More power and larger loop antennas not the solution
- Relay attacks very effective
 - Current mechanisms cannot prevent location spoofing
- More work is needed!

Future work

- Investigate other standards
 - ISO 14443 B
 - **ISO 15693**
- Improvement of results
 - Application specific receivers, antennas etc
 - Signal processing