
Computer Graphics Tick 3
Rasterization with OpenGL

(a) The mesh’s 16384 vertices (b) The heightmap shaded

Figure 1: In this exercise you will visualize a heightmap as a mesh using
OpenGL. (a) shows the individual vertices of the mesh, and (b) shows the mesh
shaded with diffuse lighting.

1 Introduction

In this exercise you will write code for rendering an image with OpenGL using
rasterization.

You will first use OpenGL to transfer data from the CPU memory onto the
GPU memory to draw a simple cube. Secondly, you will illuminate this cube
with diffuse illumination using shaders — little programs compiled for the GPU.
Finally, you’ll load some heightmap data onto the GPU to visualize a real-world
volcano.

1



Figure 2: If you have set Tick 3 up correctly, you will see a black cube. Press
P to see the vertices, and W to see that the cube is made up of triangles.

2 Getting started

The practical materials are available online: http://www.cl.cam.ac.uk/TODO/
cst1a-gfx/tick3.zip. It contains the following files and directories:

tick3
lib

JOML Java math library for OpenGL calculations

lwjgl Lightweight Java Game Library
resources

fragment_shader.glsl Processes fragments created by the rasterizer

vertex_shader.glsl Processes vertex data

mtsthelens.png Heightmap that you will render

src/gfx/tick3

Camera.java Controls 3D camera position

OpenGLApplication.java Uses OpenGL to interface with the GPU

Shader.java Compiles a shader – a program for the GPU

ShaderProgram.java Uses the vertex and fragment shaders together

Tick3.java Main class

The files you will modify and submit for this exercise have been highlighted .
Follow the instructions in the setup documentation to compile and run the
source code for this exercise.

You should see a black cube like the one in Figure 2. You can move the camera
around by clicking and dragging with your mouse. You can press the W key to
enable wireframe drawing, and the P key to enable vertex-only drawing.

2

http://www.cl.cam.ac.uk/TODO/cst1a-gfx/tick3.zip
http://www.cl.cam.ac.uk/TODO/cst1a-gfx/tick3.zip


2.1 OpenGL

OpenGL is an application programming interface (API) for graphics hardware,
i.e. graphics processing units (GPU). OpenGL contains hundreds of special
commands that are used to make a GPU draw shapes. You will use some of the
more common OpenGL commands in this exercise.

You will need a computer that can run OpenGL 3.0. Most computers will
support OpenGL 3.0, but if your personal machine does not, you can use the
MCS machines instead.

The typical OpenGL rendering pipeline is as follows:

1. Specify data for shapes using geometric primitives (generally triangles).

2. Run a vertex shader on input primitives to determine their position on
the screen, and other optional rendering attributes (e.g. colour).

3. Perform rasterization. This converts geometric primitives into fragments
(potential pixels) with locations on the screen.

4. Finally, run a fragment shader on each fragment generated by rasterization
to determine its final colour and position on the screen.

For more information, the OpenGL Programming Guide 8th Edition provides
a good reference. Make sure to only consult up-to-date documentation.

2.2 LWJGL — Light-Weight Java Games Library

OpenGL is a C library available on most platforms (Windows, OSX, Linux, An-
droid, iOS). The standard Java libraries do not provide access to OpenGL, so it
is necessary to use an external library. In this course we will use the Lightweight
Java Game Library1 (LWJGL) to provide wrappers around OpenGL’s C func-
tions. The Java LWJGL functions work largely the same as the C ones.

The LWJGL library is included in the ZIP file with the template code, in the
lib/lwjgl directory.

2.3 JOML — Java OpenGL Math Library

In addition to LWJGL you will also use JOML library, which contains classes
for operations on vectors and matrices. The library is more powerful than the
simple Vector class you used in the previous tics and is in particular intended for
OpenGL applications. It is worth checking a few examples at https://github.
com/JOML-CI/JOML/wiki/JOML-and-modern-OpenGL.

The JOML library is included in the ZIP file with the template code, in the
lib/JOML.jar file.

1Lightweight Java Game Library 3 – https://www.lwjgl.org/

3

https://github.com/JOML-CI/JOML/wiki/JOML-and-modern-OpenGL
https://github.com/JOML-CI/JOML/wiki/JOML-and-modern-OpenGL
https://www.lwjgl.org/


2.4 Compiling and running the code

The instruction below is for compiling and running the code form the com-
mand line. Refer to the document Working with IDEs for an instruction for an
IDE.

When compiling the code, it is necessary to specify the classpath to the libraries
we will use. To compile, change the current directory to tick3, then run:

javac -classpath lib/JOML.jar:lib/lwjgl/jar/lwjgl.jar -d ./out src/
gfx/tick3/*.java

The -d option specifies where to put the compiled classes. It is a good practice
not to mix the sources with compiled code.

Since the program needs to read a few files from the resources directory, it
must be started from the tick3 directory. Moreover, LWJGL library consist of
both JAVA classes and a native library, which needs to be specified at start-up
using -Djava.library.path argument. You can start the program with the following
command:

java -classpath lib/JOML.jar:lib/lwjgl/jar/lwjgl.jar:./out -Djava
.library.path=lib/lwjgl/native gfx.tick3.Tick3 --input
resources/mtsthelens.png

3 What has already been done for you

OpenGL programs can be long and complex, so several steps required for setting
up an interactive application have been already implemented for you. This
section will explain what some of the existing code in Tick 3 does. You do not
need to modify any of this code.

4



3.1 Initializing the application

Let’s first look at OpenGLApplication’s constructor method.

public OpenGLApplication(String heightmapFilename) {

// Initialize OpenGL context, and create window
initializeOpenGL();

// Create camera, and setup input handlers
camera = new Camera((double) WIDTH / HEIGHT, FOV_Y);
initializeInputs();

// Create shaders and attach to a ShaderProgram
Shader vertShader = new Shader(GL_VERTEX_SHADER, VSHADER_FN

);
Shader fragShader = new Shader(GL_FRAGMENT_SHADER,

FSHADER_FN);
shaders = new ShaderProgram(vertShader, fragShader, "colour

");

// Load heightmap data from file into CPU memory
initializeHeightmap(heightmapFilename);

// Initialize mesh data in CPU memory
float vertPositions[] = initializeVertexPositions(

heightmap );
int indices[] = initializeVertexIndices( heightmap );
float vertNormals[] = initializeVertexNormals( heightmap );
no_of_triangles = indices.length;

// Load mesh data onto GPU memory
loadDataOntoGPU( vertPositions, indices, vertNormals );

}

The main steps for initializing OpenGLApplication are:

1. initializeOpenGl() initializes OpenGL with glfwInit(), creates a window with
glfwCreateWindow(), and allocates a vertex-array object vertexArrayObj.

2. A Camera object is created so you can pan around the scene.

3. Two shaders are compiled from source code files: a vertex shader and a
fragment shader. These are encapsulated into a single ShaderProgram.

4. The heightmap image is read into CPU memory.

5. Mesh data is generated on the CPU side, and stored in three arrays:
vertPositions, vertNormals, and indices. These store the geometry of a cube

5



for now.

6. The three arrays vertPositions, vertNormals, and indices are copied into
GPU memory for drawing with OpenGL with loadDataOntoGPU().

6



3.2 Rendering with OpenGL

Next, let’s look at run(): the main loop, and render().

public void run() {
while (glfwWindowShouldClose(window) != true) {

render();
}

}

public void render() {

// Step 1: Pass a new model-view-projection matrix to the
vertex shader

Matrix4f mvp_matrix; // Model-view-projection matrix
mvp_matrix = new Matrix4f(camera.getProjectionMatrix()).mul(

camera.getViewMatrix());

int mvp_location = glGetUniformLocation(shaders.getHandle(), "
mvp_matrix");

FloatBuffer mvp_buffer = BufferUtils.createFloatBuffer(16);
mvp_matrix.get(mvp_buffer);
glUniformMatrix4fv(mvp_location, false, mvp_buffer);

// Step 2: Clear the buffer

glClearColor(1.0f, 1.0f, 1.0f, 1.0f); // Set the background
colour to dark gray

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

// Step 3: Draw our VertexArray as triangles

glBindVertexArray(vertexArrayObj); // Bind the existing
VertexArray object

glDrawElements(GL_TRIANGLES, no_of_triangles, GL_UNSIGNED_INT,
0); // Draw it as triangles

glBindVertexArray(0); // Remove the binding

// Step 4: Swap the draw and back buffers to display the
rendered image

glfwSwapBuffers(window);
glfwPollEvents();
checkError();

}

The render() method represents a typical main loop for any interactive graphics

7



application. It repeats the following four steps:

1. First, we need to update the camera position by passing a new model-
view-projection matrix to the vertex shader.

2. glClear(...) clears the OpenGL colour and depth buffers. If we didn’t do
this, we would re-draw over the previous frame’s image.

3. glDrawElements() draws the geometry that we loaded earlier with load-
DataOntoGPU(). This is rendered to the back buffer.

4. Since our window is double-buffered, swap the front and back buffers to
display the fully-drawn image to the user. Check for any input events, e.g.
mouse movements, with glfwPollEvents(). Finally check if any OpenGL
errors have occurred.

4 Loading surface normals onto the GPU

Your first task is to pass the surface normal data to OpenGL. Once we know the
surface normals, we can illuminate our objects properly. For this you will modify
the code in the loadDataOntoGPU() method in OpenGLApplication.java.

8



Figure 3: The cube rendered over several rotations, with surface normals rep-
resented using abs(frag_normal). Red corresponds to a ±X vector, green
corresponds to a ±Y vector, and blue corresponds to ±Z vector.

public void loadDataOntoGPU() {
int shaders_handle = shaders.getHandle();

// LOAD VERTEX POSITIONS
FloatBuffer vertex_buff = BufferUtils.createFloatBuffer(

vertPositions.length);
vertex_buff.put(vertPositions);
vertex_buff.flip();
int vertex_handle = glGenBuffers();
glBindBuffer(GL_ARRAY_BUFFER, vertex_handle);
glBufferData(GL_ARRAY_BUFFER, vertex_buff, GL_STATIC_DRAW);
int pos_loc = glGetAttribLocation(shaders_handle, "position");
if (pos_loc != -1) {

glVertexAttribPointer(pos_loc, 3, GL_FLOAT, false, 0, 0);
glEnableVertexAttribArray(pos_loc);

}

// LOAD VERTEX NORMALS
TODO: Put normal array into a buffer in CPU memory
TODO: Create an OpenGL buffer and load it with normal data
TODO: Get the location of the “normal” variable in the shader
TODO: Specify how to access the variable, and enbale it

// LOAD VERTEX INDICES
...

}

You can see we are already loading the vertex position data in the array vertPosi-
tions onto the GPU. That is why the cube is being drawn on the screen. We now
need to load the vertex normals in the vertNormals array onto the GPU.

The data stored in float[] array cannot be directly used by OpenGL and it needs
to be first transferred into a FloatBuffer. Since OpenGL is a C rather than Java
library, it expects normal data to be stored in a continuous segment of memory,
as they would be stored in C. FloatBuffer ensures that normals are stored in
such format. The following code allocates FloatBuffer and puts the data into

9



that butter.

FloatBuffer normal_buffer = BufferUtils.createFloatBuffer(
vertNormals.length);

normal_buffer.put(vertNormals).flip();

The flip() method flips the state from writing to reading so that OpenGL can
start reading from our normal_buffer object. Next, we need to get a handle for
a new OpenGL buffer for the normals:

int normal_handle = glGenBuffers();

We can then bring that buffer into existence on the GPU with glBindBuffer(),
and load it with the CPU data from normal_buffer using glBufferData():

glBindBuffer(GL_ARRAY_BUFFER, normal_handle);
glBufferData(GL_ARRAY_BUFFER, normal_buffer, GL_STATIC_DRAW);

We must then make sure the normal data can be accessed in the vertex shader.
First, we get the location normal_loc of the variable named “normal” in the
shader program. If this variable doesn’t exist, normal_loc will be −1, and we
can ignore the normal data.

int normal_loc = glGetAttribLocation(shaders_handle, "normal");

If the variable does exist, and we want to render using vertex normals, we
specify its layout with glVertexAttribPointer(). There are three numbers for
each normal, and they are floating point numbers. We finally mark the attribute
as enabled with glEnableVertexAttribArray

if (normal_loc != -1) {
glVertexAttribPointer(normal_loc, 3, GL_FLOAT, false, 0, 0);
glEnableVertexAttribArray(normal_loc);

}

5 Illumination with the fragment shader

Now we have given OpenGL access to the surface normal of each vertex in the
mesh, let’s render our cube with illumination. We will illuminate our cube using
the fragment shader and illumination model:

colour = Cdiff Ia︸ ︷︷ ︸
Ambient

+Cdiff kd Imax(0, N · L)︸ ︷︷ ︸
Diffuse

(1)

where Cdiff is the mesh colour, Ia the ambient light colour, kd the diffuse coeffi-
cient, I the directional light colour, N the world-space surface normal, and L the
world-space direction towards the light. The ’·’ operator is a dot product.

10



Figure 4: The cube rendered over several rotations, illuminated with simple
ambient+diffuse shading.

5.1 Shaders

A shader is a little program that is compiled just for the GPU. They are writen
in GLSL – the OpenGL Shading Language, which is similar to both C and
Java. The complete specification of the GLSL language can be found at https:
//www.opengl.org/documentation/glsl/. However, you for this exercise you
only need to know a small set of GLSL instructions, explained in the lectures and
below. To draw any shape in OpenGL, we need two shaders: a vertex shader,
which processes vertices, and a fragment shader, which processes fragments
(pixels).

The vertex shader’s job is to transform and project the 3D coordinates of each
vertex into 2D coordinates on the screen and store that 2D coordinates in the
special variable gl_Position. In vertex_shader.glsl, this is done by:

gl_Position = projection * view * model * vec4(position, 1.0);

where model, view, and projection are the 4/times4 M , V , and P matricies that
we set using setModelViewProjectionMatrices(). The vertex shader can also set
other “out” variables, like frag_position and frag_normal that will be interpo-
lated by the rasterizer, and assigned to individual fragments.

The fragment shader’s job is to set the colour variable for each fragment — the
colour that will be drawn on the screen. This is where you will implement some
simple illumination, using its frag_normal variable.

11

https://www.opengl.org/documentation/glsl/
https://www.opengl.org/documentation/glsl/


5.2 Fragment shader code
Let’s look at the source code in fragment_shader.glsl.

#version 330

in vec3 frag_normal; // fragment normal in world space

out vec3 colour;

void main()
{

const vec3 I_a = vec3(0.2, 0.2, 0.2); // Ambient light
intensity (and colour)

const float k_d = 0.8; // Diffuse light
factor

vec3 C_diff = vec3(0.560, 0.525, 0.478); // Diffuse light
colour

const vec3 I = vec3(0.941, 0.968, 1); // Light intensity (and
colour)

vec3 L = normalize(vec3(2, 1.5, -0.5)); // The light direction
as a unit vector

vec3 N = frag_normal; // Normal in world
coordinates

// TODO: Calculate colour using the illumination model
colour = abs(frag_normal);

}

Your task here is to calculate the RGB vector colour using the illumination
model given in Equation 1. The cube should now look like Figure 4.

6 Rendering a heightmap

Now you are rendering a cube with illumination. However, this is not very excit-
ing, and your GPU can handle many more triangles than the 12 it is processing
currently.

Your final task is to render something more interesting: terrain data from the
real world. This data is in the form of a heightmap, and is stored in mtsthe-
lens.png. It represents Mt. Saint Helens, the volcano in Washington state, which
erupted spectacularly in 1980.

12



heightmap
image

heightmap
mesh

MAP_SIZE

M
A
P_

SI
ZE

heightmap[8][2]

heightmap[5][7]

heightmap[0][0]

69

88

157

(startx , startz)
δx

δz

Figure 5: This shows how a heightmap image is used to create a heightmap
mesh. Three pixels in image have been highlighted to show where they line up
in the mesh. In this exercise, your mesh will be more detailed.

6.1 Preparing vertex positions

Currently, the vertex positions in the float array vertPositions have been prede-
fined to represent the cube. TheM mesh vertices are stored in as follows:

vertPositions = [x0, y0, z0, x1, y1, z1, . . . , xM , yM , zM ]

where [xm, ym, zm] represents the 3D coordinate of the mth vertex. There are
currently M = 36 vertices represented in vertPositions: 6 for each face of the
cube. Each cube face, a “quad”, is made of two triangles.

You will replace these values so each value in the heightmap array corresponds
to one vertex position in vertPositions.

13



/**
* Create an array of vertex positions.
*
* @param heightmap 2D array with the heightmap
* @return Vertex positions in the format { x0, y0, z0, x1, y1,

z1, ... }
*/

private float[] initializeVertexPositions( float[][] heightmap
) {

int heightmap_width_px = heightmap[0].length;
int heightmap_height_px = heightmap.length;

float start_x = -MAP_SIZE / 2; // X coordinate of first
vertex

float start_z = -MAP_SIZE / 2; // Z coordinate of first
vertex

// Gaps between vertices along the X and Z axes
float delta_x = MAP_SIZE / heightmap_width_px;
float delta_z = MAP_SIZE / heightmap_height_px;

TODO: create float array for vertPositions of the right size

for (int row = 0; row < heightmap_height_px; row++) {
for (int col = 0; col < heightmap_width_px; col++) {

float x, y, z;
TODO: Work out x, y, and z coordinates of vertex
TODO: Calculate the index into the vertPositions array
TODO: Set three elements in vertPositions to x, y, and z

}
}

return vertPositions;
}

The main steps are:

1. Assign a suitably sized float array to vertPositions. It should be large
enough to hold 3× the number of values in the heightmap.

2. Work out x and z coordinates of each vertex corresponding to the pixel
row rows down and col columns along in the heightmap image. Use startx,
startz, δx and δz to help you.

3. Assign the y coordinate of each vertex to heightmap[row][col].

14



vert_index = 0 vert_index + 1

vert_index +
heightmap_width

vert_index +
heightmap_width + 1

A
B

heightmap_width = 4
indices = [0, 4, 5] indices = [0, 5, 1]

4 6

5

1

2 3

A
B

Figure 6: This figure shows how you will use triangles to join up your vertices.
In this example, there are 4× 4 = 16 vertices, and 3× 3× 2 = 18 triangles. The
four top left vertices are joined by triangles A and B. Each triangle is defined
as indices into the vertex array, anti-clockwise.

4. Calculate the index into vertPositions that corresponds to that vertex.

5. Write three float values for x, y, z into vertPositions.

6.2 Preparing vertex indices

You will now define how to join up the vertices with indices. Figure 6 shows
how we will use two triangles to join groups of four vertices.

15



/**
* Create an array of vertex indices.
*
* @param heightmap 2D array with the heightmap
* @return Table with the vartex indices, three indices for

each triangle
*/

private int[] initializeVertexIndices( float[][] heightmap ) {

int heightmap_width_px = heightmap[0].length;
int heightmap_height_px = heightmap.length;

TODO: create int array for indices of the right size

int index_count = 0;
for (int row = 0; row < heightmap_height_px - 1; row++) {

for (int col = 0; col < heightmap_width_px - 1; col++) {
TODO: Get vert_index for the corresponding vertex at (row,col)
TODO: Add three indices to index_count for lower triangle ‘A’
TODO: Add three indices to index_count for upper triangle ‘B’

}
}

return indices;
}

}

The main steps are:

1. Assign an int array to indices that is large enough to hold six vertices for
each group of four vertices.

indices = new int[6 * (heightmap_width_px - 1) * (
heightmap_height_px - 1)];

2. Assign vert_index to the index of the top left vertex in that group of four.

int vert_index = heightmap_width_px * row + col;

3. Add the three indices corresponding to the lower triangle A for each group
of four vertices. It is important the indices are given in anti-clockwise
order, or the triangles will not be drawn.2

indices[count++] = vert_index;
indices[count++] = vert_index + heightmap_width_px;

2Note how we assign to indices[count++] to set an index at location count, and then
incrememnt count in a single call.

16



vecnx

vecnz vertNormal = vecnx × vecnz

vertex for which
to compute normal

Figure 7: One way to compute the direction of the normal at a vertex (shown
in red) is to compute a cross product of two tangent vectors (shown in black).

Figure 8: The mountain rendered with diffuse illumination (replace with better
figure).

indices[count++] = vert_index + heightmap_width_px + 1;

4. Add the three indices corresponding to the upper triangle B in a similar
way to triangle A. See Figure 6 to see which indices to use.

6.3 Preparing vertex normals

The final task is to work out surface normals for each vertex. This will allow
you to illuminate your heightmap surface. Similarly to vertex positions, the M
mesh normals are stored as follows:

vertNormals = [nx0, ny0, nz0, nx1, ny1, nz1, . . . , nxM , nyM , nzM ]

where [nxm, nym,nzm] represents the 3D normal vector of themth vertex.

17



/**
* Create an array of vertex normals.
*
* @param heightmap 2D array with the heightmap
* @return Array of vertex normals in the format { n_x0, n_y0,

nz0, n_x1, n_y1, n_z1, ... }
*/

private float[] initializeVertexNormals( float[][] heightmap )
{

int heightmap_width_px = heightmap[0].length;
int heightmap_height_px = heightmap.length;

int num_verts = heightmap_width_px * heightmap_height_px;
vertNormals = new float[3 * num_verts];

TODO: Initialize each normal to (0,1,0) so that valid normals can be found at edges

float delta_x = MAP_SIZE / heightmap_width_px;
float delta_z = MAP_SIZE / heightmap_height_px;

for (int row = 1; row < heightmap_height_px - 1; row++) {
for (int col = 1; col < heightmap_width_px - 1; col++) {

TODO: Create Vector3f Tx
TODO: Create Vector3f Tz

TODO: Calculate Vector3f vertNormal by as the normalized
cross product of vecNx and vecNz and put in vertNormals

}
}

return vertNormals;
}

Let the surface of our heightmap be defined as a function f(x, z) = y. Note that
y and z variables are swapped to be consistent with the OpenGL coordinates.
If we can find two vectors that are tangent to the surface along x- and z-axis
directions, the direction of the normal is given by the cross product of these two
vectors — see the illustration in Figure 7.

Since we are dealing with a discrete representation of the surface, we need
to compute tangent vectors using a discrete approximation, so called central
differences. The vector tangent to the slice of the surface along the x-axis can

18



Figure 9: The result you should achieve if you implement the Tick Star option.

be calculated as:

Tx = [2 δx, f(x+ δx, z)− f(x− δx, z), 0] , (2)

where δx is the projected distance between vertices along x-axis (refer to the
right panel in Figure 5). Use the same value of δx as you used for computing
vertex positions. The second coordinate of vector Tx (y coordinate) is computed
as a central difference: the difference between the height of the next and previous
vertices along x. Similarly, the tangent vector Tz can be computed as:

Tz = [0, f(x, z +−δz)− f(x, z − δz), 2 δz] . (3)

Then, the normal direction at the vertex can be computed as:

D = Tx × Tz , (4)

and the normal is the normalized value of this vector:

N =
D

|D|
. (5)

Note that you can (and should) use the methods Vector3f.cross() and Vec-
tor3f.normalize() to compute a cross product and to normalize the vector value.
The normals at the edges of the surface should be set to (0,1,0).

7 Tick-Star

Note that this part is optional and you should attempt it only if you completed
everything else. To get a tick star mark in this task, you need to modify the

19



shaders and the Java code to render the peak of the volcano in white and with
a specular component. You should achieve the result similar to one shown in
Figure 9.

The change of shading and material can be easily introduced in the fragment
shader. Introduce a conditional statement testing the altitude of the current
fragment to decide on the material to use. Note that you need to pass the
altitude from vertex to fragment shader. In order to compute the specular color
component, you need to compute reflected ray and pass the camera position in
the world coordinates from your Java code to the fragment shader.

8 Submission

You need to submit 2 files for this tick:

• fragment_shader.glsl

• OpenGLApplication.java

Note that this time the code will be compiled but it will NOT be run by the
test script. This is because the servers we use do not have a GPU, which could
run OpenGL. The program will be checked in detail during the ticking session.
If you completed Tick-Star, you do not need to submit vertex_shader.glsl, which
you had to modify. Just show your result to the ticker.

20


	Introduction
	Getting started
	OpenGL
	LWJGL — Light-Weight Java Games Library
	JOML — Java OpenGL Math Library
	Compiling and running the code

	What has already been done for you
	Initializing the application
	Rendering with OpenGL

	Loading surface normals onto the GPU
	Illumination with the fragment shader
	Shaders
	Fragment shader code

	Rendering a heightmap
	Preparing vertex positions
	Preparing vertex indices
	Preparing vertex normals

	Tick-Star
	Submission

