
A. Proof of Preservation

Theorem. If Σ ; Γ ` H | S and H | S −→ H ′ | S ′, then there exist Σ′ and Γ′ such that Σ, Σ′ ; Γ, Γ′ ` H ′ | S ′.

Suppose that Σ ; Γ ` H | S and H | S −→ H ′ | S ′. We perform a case analysis on the rule used to perform the reduction.

• Rule

F(this) = p
H(p)=C (f1 = w1 p1 ; .. ; fn = wn pn)
F(x ) = w ′ p′

H | 〈F | x = this . fi ; s 〉S −→ H | 〈F [x 7→w ′ pi ] | s 〉S

Since Σ ; Γ ` H | 〈F | x = this . fi ; s 〉S is valid, it holds that Γ (this) = C , fields (C ) = t1 f1 .. tk fk , Γ (x ) = t ′ and ti <: t′. Let
Σ′ and F ′ be empty. We must show that Σ ; Γ ` H | 〈F [x 7→wi pi ] | s 〉S . The only non-trivial sub-goal is Σ ; Γ ` F [x 7→wi pi ],
which in turn requires to prove Σ ` wi pi : ti . We know that F(y) = p and H(p)=C (f1 = w1 p1 ; .. ; fn = wn pn): since Σ ` H it
holds that Σ ` wi pi : ti .

• Rule

F(this) = p
F(x ) = w ′ p′

H(p)=C (f1 = sv1 ; .. ; fn = svn)
fields (C ) = t1 f1 .. tn fn
sv = [[ ti ]] p′

H | 〈F | this . fi = x ; s 〉S −→ H [p 7→(H (p) . fi 7→sv)] | 〈F | s 〉S

Since Σ ; Γ ` H | 〈F | this . fi = x ; s 〉S is valid, it holds that Γ (this) = C , fields (C ) = t1 f1 .. tk fk , and Γ (x ) <: ti . Let Σ′ and
F ′ be empty. The non-trivial goal is Σ ` H [p 7→(H (p) . fi 7→sv)], and in particular the two sub-goals Σ(p) = C and Σ ` sv : ti . The
first holds because H(p)=C (f1 = sv1 ; .. ; fn = svn) and because Σ ` H . The second holds because F(x ) = sv and Σ ; Γ ` F .

• Rule

F(y) = p
ptype (H , p) = C
mbody (m, C ) = x1 .. xn . s0 ; return x0

mtype (m, C ) = t1 .. tn → t
F(y1) = w1 p1 .. F(yn) = wn pn

sv1 = [[ t1 ]] p1 .. svn = [[ tn ]] pn

F(x ) = w ′ p′

cast = w2c (w ′)

H | 〈F | x = y .m (y1 .. yn) ; s 〉S −→ H | 〈 [] [x1 7→sv1 .. xn 7→svn ] [this 7→ p] | s0 ; return x0 〉 〈F | x = cast ret ; s 〉S

Since Σ ; Γ ` H | 〈F | x = y .m (y1 .. yn) ; s 〉S is valid, it holds that Γ (y) = C and mtype (m, C ) = t1 .. tn → t ′. For all i
such that concr (ti) holds, we have Γ ` yi <: ti ; otherwise we have G| −wipi : ti. Also, let Γ (x ) = t : we have Σ ` w ′ p′ : t , and if
concr (t), then t′ <: t. Let Σ′ be empty. Let Γ′ = x1 : t1, .., xn : tn , this:C , ret :t ′. After some unfoldings, the non-trivial goals left are

1) Σ ; Γ, Γ′ ` [] [x1 7→sv1 .. xn 7→svn ] [this 7→ p]

2) Γ, Γ′ ` s0

3) Γ, Γ′ ` x = cast ret

For the goal 1), for each 1 ≤ i ≤ n, we distinguish two cases. If concr (ti), since Γ ` yi <: ti and F(yi) = pi (the wrapper wi

is empty) and Σ ; Γ ` F , we have Σ ` pi : ti . If not, then by construction of [[−]], it holds Σ ` [[ ti ]] pi : ti . We conclude that for
all i it holds Σ ; Γ, Γ′ ` [] [xi 7→ [[ ti ]] pi ] by construction of Γ′. The constraint Σ ; Γ, Γ′ ` [] [this 7→ p] is satisfied instead because
ptype (H , p) = C . The goal follows.
The goal 2) is true because the method body s0 was well-typed in (a subset of) the environment Γ′.
For the goal 3), we distinguish two cases. If concr (t), then 3) holds because Γ′ ` ret : t ′ and t′ <: t, where t is the type of x in Γ.
Otherwise, w′ is not empty, and by definition of w2c and since Σ ` w ′ p′ : t , we conclude Γ, Γ′ ` x = cast ret .

• Rule
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F(y) = (like C ) p
ptype (H , p) = D
mbody (m, D) = x1 .. xn . s0 ; return x0

mtype (m, C ) = t1 .. tn → t
mtype (m, D) = t ′

1 .. t ′
n → t ′

∀i . ti <: t ′
i ∨ t ′

i = dyn
(concr (t) ∧ concr (t ′)) ⇒ t ′ <: t
F(y1) = w1 p1 .. F(yn) = wn pn

sv1 = [[ t ′
1 ]] p1 .. svn = [[ t ′

n ]] pn

F(x ) = w ′ p′

cast = w2c (w ′)

H | 〈F | x = y .m (y1 .. yn) ; s 〉S −→ H | 〈 [] [x1 7→sv1 .. xn 7→svn ] [this 7→ p] | s0 ; return x0 〉 〈F | x = cast (t) ret ; s 〉S

Since Σ ; Γ ` H | 〈F | x = y .m (y1 .. yn) ; s 〉S is valid, it holds that Γ (y) = like C . For all i such that concr (ti) holds, we have
Γ ` yi <: ti ; otherwise we have Σ ` wi pi : ti (and the wi wrapper is not empty). Let Γ′ = x1 : t′1, .., x

′
n : t′n, this : D, ret :t . After

some unfoldings, the non-trivial goals left are

1) Σ ; Γ, Γ′ ` [] [x1 7→sv1 .. xn 7→svn ] [this 7→ p]

2) Γ, Γ′ ` s0

3) Γ, Γ′ ` x = cast (t) ret

For the goal 1), for each 1 ≤ i ≤ n, we distinguish two cases. If concr (ti), since Γ ` yi <: ti and F(yi) = pi (the wrapper wi is
empty) and Σ ; Γ ` F , we have Σ ` pi : ti and in turn Σ ` pi : t ′

i . If not, then by construction of [[−]], it holds Σ ` [[ ti ]] pi : ti . We
conclude that for all i it holds Σ ; Γ, Γ′ ` [] [xi 7→ [[ t ′

i ]] pi ] by construction of Γ′. The constraint Σ ; Γ, Γ′ ` [] [this 7→ p] is satisfied
instead because ptype (H , p) = C . The goal follows.
The goal 2) is true because the method body s0 was well-typed in (a subset of) the environment Γ′.
For the goal 3), we distinguish two cases. If concr (t) ∧ concr (t ′), then let t′′ be the type of x in Γ. 3) holds because Γ′ ` ret : t and
t′ <: t <: t′′. Otherwise, w′ is not empty, and by definition of w2c and since Σ ` w ′ p′ : t , we conclude Γ, Γ′ ` x = cast (t) ret .
XXXXXXXXXXXXXXXXXXXX
Since Σ ; Γ ` H | 〈F | x = y .m (y1 .. yn) ; s 〉S is valid, it holds that Γ (y) = like C , mtype (m, C ) = t1 .. tn → t ′,
Γ ` yi <: ti for all 1 ≤ i ≤ k, and Γ (x ) = t where t′ <: t. The condition mtype (m, C ) = mtype (m, D) guarantees
that the method actually invoked offers the same type interface than the method expected. It is then possible to conclude with the same
argument of the previous case.

• Rule

F(y) = (dyn) p
ptype (H , p) = C
mbody (m, C ) = x1 .. xn . s0 ; return x0

mtype (m, C ) = t1 .. tn → t
F(y1) = w1 p1 .. F(yn) = wn pn

∀i . concr (ti) ⇒ svtype (H , wi pi) <: ti
sv1 = [[ t1 ]] p1 .. svn = [[ tn ]] pn

H | 〈F | x = y .m (y1 .. yn) ; s 〉S −→ H | 〈 [] [x1 7→sv1 .. xn 7→svn ] [this 7→ p] | s0 ; return x0 〉 〈F | x = (dyn) ret ; s 〉S

Since Σ ; Γ ` H | 〈F | x = y .m (y1 .. yn) ; s 〉S is valid, it holds that Γ (x ) = dyn. Let Σ′ be empty, and let Γ′ = x1 : t1, .., xn :
tn , this:C , ret :t ′. After some unfoldings (and ignoring the cases proved by the same argument that the concrete type case) the non-trivial
goals left are:

1) Σ ; Γ, Γ′ ` [] [x1 7→sv1 .. xn 7→svn ] [this 7→ p]

2) Γ, Γ′ ` x = (dyn) ret

for some Γ′′; Γ′′′. Goal 1) holds because for all i such that concr (ti), the proper type constraint is enforced by the dynamic check
svtype (H , svi) <: ti , while for the other indexes the type constraint is satisfied because of the wrapper [[ ti ]]. Goal 2) is true because
of the (dyn) cast.

• Rule

p fresh for H
fields (C ) = t1 f1 .. tn fn
F(y1) = w1 p1 .. F(yn) = wn pn

sv1 = [[ t1 ]] p1 .. svn = [[ tn ]] pn

H | 〈F | x = newC (y1 .. yn) ; s 〉S −→ H [p 7→C (f1 = sv1 ; .. ; fn = svn)] | 〈F [x 7→ p] | s 〉S

Since Σ ; Γ ` H | 〈F | x = newC (y1 .. yn) ; s 〉S is valid, it holds that Γ (x ) = C , fields (C ) = t1 f1 .. tn fn , and for all i such
that concr (ti), Γ ` yi <: ti . Let Σ′ = p : C for p fresh, and let Γ′ = x : t. The environments Σ, Σ′ and Γ, Γ′ are well-formed. After
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some unfoldings, the non-trivial goals left are:

1) Σ, Σ′ ; Γ, Γ′ ` F [x 7→ p]

2) Σ, Σ′ ` H [p 7→C (f1 = sv1 ; .. ; fn = svn)]

Goal 1) amounts to show that Σ, Σ′ ` p :C , which is true because of the static semantics. For goal 2) we must show that Σ, Σ′ ` svi : ti .
This follows from Σ, Σ′ ; Γ, Γ′ ` F , Γ ` yi <: ti and F(yi) = svi .

• Rule

H | 〈F0 | return x 〉 〈F1 | s1 〉S −→ H | 〈F1 [ret 7→F0(x )] | s1 〉S

Since Σ ; Γ ` H | 〈F0 | return x 〉 〈F1 | s1 〉S is valid, it holds that Γ (x ) = Γ (ret). Let Σ′ and Γ′ be empty. Since Σ ; Γ ` F0

and Γ (x ) = Γ (ret), it holds that Σ ; Γ ` F1 [ret 7→F0(x )]. The result follows.
• Rule

H | 〈F | x = y ; s 〉S −→ H | 〈F [x 7→F(y)] | s 〉S

Since Σ ; Γ ` H | 〈F | x = y ; s 〉S is valid, it holds that Γ (y) = Γ (x ). Let Σ′, Γ′ be empty. The only non-trivial goal is
Σ ; Γ ` F [x 7→F(y)]. Since Σ ; Γ ` F , we know that Σ ` sv :Γ (y), and the result follows because Γ (y) = Γ (x ).

• Rule

F(y) = w p
ptype (H , p) = D
D <: C

H | 〈F | x = (C ) y ; s 〉S −→ H | 〈F [x 7→ p] | s 〉S

Since Σ ; Γ ` H | 〈F | x = (C ) y ; s 〉S is well-typed, it holds that Γ (x ) = C . It is trivial to satisfy the goal Σ ; Γ ` F [x 7→ p]
since ptype (H , p) = D and D <: C . The cases for cast to like C and dyn are similar.

B. Proof of Progress

Theorem. If a well-typed configuration Σ ; Γ ` H | 〈F | s 〉S is stuck, that is H | 〈F | s 〉S 6−→, then the statement s is of the form
x = y .m (y1 .. yn) ; s ′ and Γ (y) is dyn or like C for some C, or s is of the form x = (C)y; s′ and F(y) = w p with ptype(H, p) 6<: C .

The proof is by structural induction on the length of s (again, we treat statements as lists).

x = this . fi ; s By unfoldings of the initial assumption due to the well-formedness rules (a), Σ ` H , (b) Σ; Γ ` F , (c) Γ ` x = this.fi,
and (d) Σ; Γ ` H | S. By (c), x, this ∈ dom(Γ) so by (b) and F (x) = sv1 and F (y) = sv2. Remark that sv2 = p (as bindings for
this in the stack are created only when a method is invoked). We then also know that Γ(y) = C, that the field fi exists in C and that
H(p) = D[...], where D <: C. This guarantees that the field fi exists in the object pointed to by p, and the rule RED FIELD can reduce.

this . fi = x ; s Same reasoning as above.

x = y0.m(y1..yn); s By unfoldings of the induction hypothesis due to the well-formedness rules (a) Σ ` H , (b) Σ; Γ ` F , (c)
Γ ` x = y.m(y1..yn); s, and (d) Σ; Γ ` H | S. By (c) and trivial unfoldings, y0..yn ∈ dom(Γ), so by (b), F (yi) = svi for
i = 1..n, i.e,. all local variables referred to by the statement exist on the current stack frame.
If sv0 = p, then, by WF-rules for frames Γ(y0) = C for some C and Σ ` p : C. By WF-rule for heaps, H(p) = C′(...) s.t. C′ <: C,
i.e., ptype(H, p) = C′. By subclassing rules, C has method m implies C′ has method m with same signature. Thus, the mbody
lookup will succeed. And arities will be correct from (c). So the rule RED CALL LIKE can reduce. If sv0 = (dyn) p, then either the
rule RED CALL DYN reduces, or one of tests svtype(H, wi pi) fails, and in this case the configuratin is stuck, and the first conclusion
of the theorem applies. If sv0 = (like C) p, then either the rule RED CALL LIKE reduces, or mtype(m, C) and mtype(m, D) are not
compatible, the configuration is stuck, and the first conclusion of the theorem applies.

skip ; s The statement skip always reduce.

x = newC (y1 .. yn) ; s By unfoldings of the initial assumption, (a) there exists Γ, Γ′ s.t., Γ ` t x = new C(y1..yn) and (b) Σ; Γ ` F .
By (a) NEW and TS-VAR, yi ∈ dom(Γ) for i = 1..n. By (b) and WF-SF-STACK-FRAME, yi ∈ dom(F ) for i = 1..n. Thus, all the
necessary variables are present in F , and rule RED NEW can reduce.

x = y ; s Similar to the case above: the well-formedness constraints ensure that y is defined in the current stackframe.

x = (t) y ; s By unfoldings of the initial assumption due to the well-formedness rules, (a) exists Γ s.t., Γ ` x = (t) y .Γ, and (b) Σ; Γ ` F .
All matching type rules require (indirectly, via T-VAR) x ∈ dom(Γ) and y ∈ dom(Γ). By (b) and WF-SF-STACK-FRAME, F (y) = w p
for some w p. If t is like C or dyn, then the rule RED CAST OTHER can reduce. If t is a concrete type C and (ptype(H,p)<: C , then
the rule RED CAST CLASS OK can reduce; otherwise the configuration is stuck because s is of the form x = (C)y; s′ and F(y) = w p
with ptype(H, p) 6<: C .

return y We can show that F (y) from the well-formedness conditions, following the same reasoning as above. Then, the rule RED-RETURN
can reduce.
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C. Proof of Compilation

Theorem. Let Σ ; Γ ` H | S be a well-typed source configuration’:

1. if H | S −→ H ′ | S ′, then [[ Γ, H | S ]] −→ [[ Γ, H ′ | S ′ ]];

2. conversely, if [[ Γ, H | S ]] −→ H ′′ | S ′′, then there exists a well-typed source configuration Σ′ ; Γ′ ` H ′ | S ′ such that H | S −→
H ′ | S ′ and [[ Γ′, H ′ | S ′ ]] = H ′′ | S ′′.

Given a well-typed source configuration Σ ; Γ ` H | S , we perform a case analysis on the reduction rules that apply.

• Rule

F(this) = p
F(x ) = w ′ p′

H(p)=C (f1 = sv1 ; .. ; fn = svn)
fields (C ) = t1 f1 .. tn fn
sv = [[ ti ]] p′

H | 〈F | this . fi = x ; s 〉S −→ H [p 7→(H (p) . fi 7→sv)] | 〈F | s 〉S

In the compiled configuration [[ Γ, H | 〈F | this . fi = x ; s 〉S ]], it holds that F(this) = p, F(x ) = p′, H(p) = C(f1 =
p1; ..; fn = pn) where svi = wi pi for some wi. The compiled configuration then reduces to the compilation of H [p 7→ (H (p) . fi 7→
sv)] | 〈F | s 〉S .
Conversely, if the compiled configuration reduces, since compiled reductions are deterministic, the source configuration can reduce via
RED ASSIGN, and the simulation diagram commutes.

• Rules RED NEW, RED COPY, RED RETURN, RED CAST CLASS OK, RED CAST OTHER, and RED CALL follow using the same argument.
• Rule

F(y) = p
ptype (H , p) = C
mbody (m, C ) = x1 .. xn . s0 ; return x0

mtype (m, C ) = t1 .. tn → t
F(y1) = w1 p1 .. F(yn) = wn pn

sv1 = [[ t1 ]] p1 .. svn = [[ tn ]] pn

F(x ) = w ′ p′

cast = w2c (w ′)

H | 〈F | x = y .m (y1 .. yn) ; s 〉S −→ H | 〈 [] [x1 7→sv1 .. xn 7→svn ] [this 7→ p] | s0 ; return x0 〉 〈F | x = cast ret ; s 〉S

In the compiled configuration, it holds that F(y) = p and F(yi) = pi . The statement x = y .m (y1 .. yn) has been compiled to
x = y @ m (y1 .. yn), because since the configuration was well-typed and F(y) = p, it must hold that Γ (y) = C . The compiled
configuration can reduce via REC CALL TARGET into the compiled outcome.
Conversely, if the target configuration reduces, since the source configuration was well-typed and compiled reductions are deterministic,
the source configuration can reduce via RED CALL, and the simulation diagram commutes.

• Rule

F(y) = (like C ) p
ptype (H , p) = D
mbody (m, D) = x1 .. xn . s0 ; return x0

mtype (m, C ) = t1 .. tn → t
mtype (m, D) = t ′

1 .. t ′
n → t ′

∀i . ti <: t ′
i ∨ t ′

i = dyn
(concr (t) ∧ concr (t ′)) ⇒ t ′ <: t
F(y1) = w1 p1 .. F(yn) = wn pn

sv1 = [[ t ′
1 ]] p1 .. svn = [[ t ′

n ]] pn

F(x ) = w ′ p′

cast = w2c (w ′)

H | 〈F | x = y .m (y1 .. yn) ; s 〉S −→ H | 〈 [] [x1 7→sv1 .. xn 7→svn ] [this 7→ p] | s0 ; return x0 〉 〈F | x = cast (t) ret ; s 〉S

In the compiled configuration, it holds that F(y) = p and F(yi) = pi . The statement x = y .m (y1 .. yn) has been compiled to
x = y @ (likeC )m (y1 .. yn), because since the configuration was well-typed and F(y) = (like C ) p, it must hold that Γ (y) = like C .
All the type verifications required by the rule CALL LIKE TARGET are satisfied since they were satisfied for the rule CALL LIKE. The
rule CALL LIKE TARGET can then reduce into the compiled outcome.
Conversely, if the target configuration reduces via RED CALL LIKE TARGET, since the source configuration was well-typed and compiled
reductions are deterministic, the source configuration can reduce via RED CALL LIKE because the type verifications were already satisfied
by RED CAL LIKE TARGET, and the simulation diagram commutes.

4



• The case for the rule CALL DYN is analogous to that of CALL LIKE. Again, the key point is that the type verifications performed by
CALL DYN TARGET have already been performed by CALL DYN, and vice-versa.
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