Computation Theory Supervision 2

1. Suppose that A and B are subsets of \mathbb{N}. Let $f : \mathbb{N} \to \mathbb{N}$ be a register machine computable function satisfying: for all $x \in \mathbb{N}$, x is an element of A if and only if $f(x)$ is an element of B. Show that A is register machine decidable if and only if B is.

2. Suppose that f and g are register machine computable partial functions $\mathbb{N} \rightarrow \mathbb{N}$, such that

$$\{x \in \mathbb{N} \mid f(x) \downarrow\} = \{x \in \mathbb{N} \mid g(x) \uparrow\}.$$

Show that $\{x \in \mathbb{N} \mid f(x) \downarrow\}$ is decidable.

3. Are the following subsets of \mathbb{N} decidable? Justify your answer.

 (a) The set of numbers $e \in \mathbb{N}$ for which $17 \in \text{im}(\varphi_e)$.
 (b) The set of numbers $e \in \mathbb{N}$ for which, when executing the register machine $\text{prog}(e)$ with input 0, the content of register R_5 remains unchanged during the entire execution.
 (c) The set of codes $\langle e, e' \rangle$ of pairs of numbers e and e' satisfying $\varphi_e = \varphi_{e'}$.

4. Construct a Turing machine that ends in an accepting state if its input tape is of the form $\triangleright 0^n 1^n$ for some $n \in \mathbb{N}$, and ends in a rejecting state otherwise. You may assume that that the input tape always consists of the left endmarker \triangleright, followed by a string of zeroes and ones, followed by only blank symbols $_$.

5. Construct a Turing machine that computes the addition function $+: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$.