
Chapter 3

Computer security

I have not written this book for the exclusive benefit of full time security research-
ers—my primary audience is rather one of technically-minded readers with a gen-
eral computer science background who want to find out about ubicomp security. I
shall therefore use this chapter to introduce some basic topics in computer security,
in particular the three fundamental properties of confidentiality, integrity and avail-
ability, together with the cryptographic mechanisms that may help us protect them.
(Despite the fact that this explanation dwells on those mechanisms so as to get the
technical details out of the way, readers should heed the caveat of section1.2about
security being more than just cryptography.)

For readers interested in a deeper treatment of such fundamentals, many excel-
lent textbooks will provide further details. Gollmann [123] is one of the best all-
round introductions to computer security; Amoroso [7] concentrates on the theoret-
ical foundations of the discipline; Schneier [227] offers a thorough explanation of
the cryptographic details, for which the monumental Kahn [149] provides the his-
torical perspective; Anderson [11] beautifully illustrates how computer security and
its numerous shortcomings affect the real world, while Rubin [223] gives you an
extremely readable and up-to-date problem-oriented explanation of the security so-
lutions you can adopt in practice. All of these texts are accessible to non-specialists,
particularly the last two. More advanced textbooks include Koblitz [157], which
explains the mathematical foundations of cryptography (particularly public key al-
gorithms), and Menezeset al. [187], probably the best mathematical and algorith-
mic reference for anyone who intends to write crypto code.

3.1 Confidentiality

Confidentiality is the property that information holds when it remains unknown to
unauthorized principals. The threat to confidentiality is known asdisclosure.

60

3.1. Confidentiality 61

The entity whose confidentiality needs protection typically assumes the form
of amessage, that is to say a sequence of bitsm, that is transmitted from a senderA
to a recipient1 B. We wish the messagem to be kept secret from any other entities
that might (even legitimately) handle the communication betweenA andB.

3.1.1 Encryption and decryption

The principal mechanism to protect the confidentiality ofm is encryption. A cipher
is a pair of complementary algorithms, one transforming plaintext into ciphertext
(encryption) and the other performing the reverse operation, calleddecryption. If
we denote asP the set of all possible plaintexts and asC the set of all possible
ciphertexts, then the encryption function is a bijection2 from P toC and the decryp-
tion function is the inverse bijection fromC to P.

Kahn [149, chapter 2, page 84], quoting Suetonius, reminds us that even Julius
Cæsar used such a pair of algorithms: for him, the encryption function involved
changing every letter of the message with the one three places down in the alphabet
(so “a” would encrypt to “d”), and the decryption function was the obvious inverse.
It is however apparent that, as soon as the enemy discovers the decryption func-
tion, the cipher becomes useless. One would then have to think of a new pair of
algorithms (not that this would altogether be a bad idea if the original ones were as
weak as Cæsar’s).

A more flexible solution is to make the algorithms parametric: by introducing
a keyK as a parameter, each algorithm describes not one bijection but an entire
family of them, and the bijections in a pair parameterized by the same key are of
course still inverses of each other. Each bijection is a curried3 version of the encryp-
tion or decryption algorithm with a specific key, and even if the enemy discovers
the specific decryption bijection (i.e. key) used for a certain message, we can still
safely use the same cipher as long as we choose another bijection pair by selecting
a different key.

3.1.2 Security by obscurity (don’t)

One of the cornerstones of modern cryptology is a set of principles established in
1883 by Kerckhoffs [155]. In essence, they explain that it is pointless to try to

1As Hamming [131] remarks, under many respects transmission in space (communication) and
transmission in time (storage) are equivalent. The recipientB could just as well beA at a later time,
so from this point of view even a file stored onA’s system may be viewed as a message.

2If you are not too sure what a bijection is (it’s basically a one-to-one correspondence between
two sets), you will find a review of this and related terms in appendixA. This also contains a
brief cheat sheet (page170) about letters such as∀,∃ and∈ that have been kicked out of shape
by mathematicians.

3This term is explained in sectionA.4 on page173.

62 Chapter 3. Computer security

hide the cipher algorithm and that all the security should reside in the choice of
the key. The algorithm will become known eventually anyway, as it is impossible
to guarantee the absence of leaks about the workings of the cipher when people
other than the inventor have to use it. It is wiser to assume the algorithm to be
public knowledge from the start, and at least reap the benefits of peer review by
competent cryptologists.

Incidentally, this is the process that was followed by the American National
Institute of Standards and Technology (NIST) to select the Advanced Encryption
Standard (AES) cipher: 15 candidate algorithms were submitted by teams of cryp-
tologists from around the world and were subsequently subjected to aggressive peer
review from 1998 to 2000. In August 1999, a first round of selection chose 5 final-
ists [197], and in October 2000 the Belgian algorithm Rijndael created by Daemen
and Rijmen [76] was announced as the winner [198]. This open and publicly re-
viewed selection process is probably the best possible guarantee of the quality of
the chosen cipher and the absence of backdoors in it.

Contrast this with the deplorable practice of “security by obscurity”, in which
the algorithm is guarded as a secret (as was originally done for the infamous “Clip-
per chip”); this certainly makes the initial cryptanalysis harder for the adversary,
but it may hide simple weaknesses that an open peer review process might have
revealed—as the pay-TV industry discovered to its dismay after fielding tens of
thousands of instances of a closed system that crackers soon learnt to bypass [213].

3.1.3 Brute force attacks

Once the cipher is public, the enemy who gets hold of an encrypted message can
in theory decrypt it by applying all the decryption bijections in the family to it and
selectinga posteriorithe one which gives a meaningful result4. For this reason it is

4The alert reader will notice that this requires the nontrivial ability to recognize the meaningful
result among all the meaningless ones. While a human reader will have no hesitation in flagging
AWEVN4@HBW-CUF as a failed attempt andMEET YOU AT 6 as a successful decryption, things become
much harder when the detection has to be performed automatically (which is a necessity when explor-
ing an entire key space) and particularly when the plaintext has no known structure. If the encrypted
message contains some integrity-protecting redundancy, this can be checked automatically by the
cryptanalyst. Otherwise, the cryptanalyst will have to look out forcribs, which are expected items of
plaintext such as “Dear Sir”, or for statistical properties of the plaintext. But the automatic applica-
tion of such heuristics, as well as being time-consuming, can only give a probabilistic result. Besides,
as the cardinality of the set of keys approaches that of the set of plaintexts (it actuallyreachesit in the
one time pad, making the recognition theoretically impossible—see section3.1.5), the solution space
becomes dense, and heuristics that distinguish “plausible messages” from “garbage” stop working:
MEET YOU AT 6, while in itself plausible, now competes with many more equally plausible plain-
texts such asMEET YOU AT 7, CAN’T SEE YOU TODAY and evenEPIMENIDES SUGGESTS NOT TO
BELIEVE THIS SENTENCE. It must however be remarked that all these limitations apply only to the
most difficult case for the cryptanalyst, theciphertext-onlyattack. In many other situations it will

3.1. Confidentiality 63

important to take into account the size of the family of bijections (i.e. the number
of possible keys) when evaluating the safety of a cipher: if the key space is small
enough that it can be exhaustively searched, the cipher will be weak regardless of
any other consideration. (The reverse implication does not hold: a cipher may be
weak due to design flaws, despite having a key space so large that a brute force
search would take longer than the age of the universe.)

Under the strict export regulations of the United States known as ITAR5 [253],
for example, which were relaxed in January 2000 [252, 251], ciphers could be
freely exported from the USA only as long as their key length did not exceed 40
bits. Even from the point of view of a not very resourceful attacker, any 40-bit
cipher is weak, because a space of 240≈ 1012 keys can be searched by brute force
in a reasonable time; if each decryption attempt takes 10µs, the entire space can be
searched in 107 seconds, which is about 4 months. Given reasonable assumptions,
the ten-microsecond-per-attempt estimate is roughly in the correct ballpark for a
modern personal computer implementing the decryption in software6; but if the
attacker has more resources (such as dedicated hardware to perform the decryption)
this estimate could go down by three or four orders of magnitude, bringing the time
to try all keys to under an hour—perhaps just a few minutes.

One should also observe that brute force key search is ideally suited to paral-
lel processing, since the problem space can trivially be divided into independent
realms down to arbitrarily fine granularity. From March to June 1997, in an effort
led by Verser, the idle time of about 70,000 machines across the Internet was har-
vested for key search; on the 96th day this distributed system succeeded in cracking
the first of the DES challenges sponsored by RSA Data Security [222].

DES, or the Data Encryption Standard, created by IBM in the early 1970s and
adopted as a US FIPS standard in 1977 [107], is one of the most widely deployed
ciphers in the world. No exploitable cryptographic weaknesses have been found
in it (although its cryptanalysis prompted the discovery of new techniques such as

be possible to mount aknown-plaintextattack (where the cryptanalyst knows for sure that a certain
plaintext messagep maps to a specific ciphertextc) or even achosen-plaintextattack (where the
cryptanalyst can feed a plaintext message to the encrypting bijection and observe the result—this
might happen if the key and the encryption algorithm had been sealed in a tamper-proof enclosure
that could thereafter be accessed freely). In these cases it is of course trivial to verify whether any
decryption attempt yielded the correct result or not.

5International Traffic in Arms Regulations. ITAR mainly regulates war-grade weapons and parts
for tanks, jets and submarines. But encryption software is ranked as “munitions” because of its
military intelligence value.

6Gladman [116], who implemented all of the 15 AES candidates from scratch based on their
published specifications [117], gives performance figures of 1389 cycles for key setup + 352 cycles
for decryption of one block for the 128-bit key version of Rijndael (which was neither the fastest nor
the slowest of the candidates, or of the finalists). On a 200 MHz Pentium Pro, which was the platform
he used, this gives 8.7µsto decrypt one block with a new key. Of course this figure will vary with the
computer used and the cipher to be cracked, but it gives us an order of magnitude estimate.

64 Chapter 3. Computer security

Biham and Shamir’sdifferential cryptanalysis[34] and Matsui’slinear cryptanal-
ysis[185]), but it has a 56-bit key. At the time, this was asserted to be adequate for
civilian purposes: indeed, in the US, DES used to be the only officially approved
method for protecting unclassified data. Diffie and Hellman objected that this key
was too short as early as 1977 [91], and in 1994 Wiener [262] presented a design
sketch for a DES-specific hardware key search machine, which he estimated could
be built for one million dollars and would search the whole space in 7 hours. Be-
tween 1997 and 1998 the Electronic Frontier Foundation [94] did actually build
a highly parallel DES key search machine out of custom chips for 250 k$; in July
1998 this machine broke the DES II-2 challenge in 56 hours [95], finally settling the
score on the limited security provided by DES even for civilian applications (any
major company with valuable trade secrets to protect will expect its competitors to
be able to afford a mere quarter of a million dollars for industrial espionage).

In November 2001, while this book was being copy-edited, Bond and Clayton
[47, 72] announced their much cheaper (1 k$) FPGA-based DES-cracking machine
that, in the context of a smarter attack, can recover all the DES and 3DES keys of an
IBM 4758 running IBM’s own CCA cash machine software. The 4758 is the “gold
standard” tamper resistant cryptoprocessor (see section6.2.2) and is widely used in
the banking industry. This attack, which combines newly found weaknesses in the
CCA software with a smart (i.e. non exhaustive) DES key search that can be run in
just a couple of days, would allow a crooked bank manager to forge cash cards and
PIN numbers at will and thereby raid the accounts of any of the bank’s customers.

As part of the research that lead to this exploit, Clayton also compiled a valuable
survey of brute force attacks [71].

3.1.4 The confidentiality amplifier

Having accepted that the security of the cryptosystem must reside in the secrecy
of the key rather than in that of the algorithm, one is left with the problem of
distributing the key itself. IfA wishes to send a messagem to B, but wants to
encrypt it because she believes the communications channel between them to be
insecure, how can she tellB which key to use for the decryption? Traditionally,
the solution has been to transmit the key over another channel, deemed to be more
secure; the diplomatic courier with an attaché case handcuffed to his wrist is a
visual example of this.

In this scenario the cryptosystem acts as a “confidentiality amplifier”: once
bootstrapped with the help of the secure channel (which may be of insufficient
bandwidth, of inadequate latency and of excessive cost to be used for the actual
messages), the system ensures the confidentiality of a much larger and cheaper
channel.

3.1. Confidentiality 65

As noted by Diffie and Landau [92], another remarkable benefit of cryptogra-
phy is that the robustness and cost of the confidentiality protection it extends over
the communications channel do not in any way depend on the length or shape of
the channel. Contrast this with other existing ways to secure a channel, such as
embedding a data transmission cable inside an armoured and pressurized pipe.

3.1.5 Stream and block ciphers

A cipher of great theoretical importance is theone time pad, invented in 1917 by
Vernam and Mauborgne [149], which works as follows.A wants to send message
m (a string of bits) toB, so she generates a “pad” of completely random bits whose
length is at least that ofm. The ciphertext is obtained bit by bit, by XORing each
bit of m with the corresponding bit of the pad, which acts as the key. It is trivial to
verify that, given any bitp, XORing to it any other bitk twice returns the original
bit p7. So, to decrypt, one simply XORs again each bit of the ciphertextp⊕k with
the corresponding bit of the padk; the two copies of the pad bit cancel each other
out, yielding the plaintextp.

Since each bit of the pad is random and independent of the others, it contributes
one full bit of entropy to the resulting ciphertext bit. (This is only true if the pad
is never reused to encipher another bit—hence the “one time” in the name.) It
is therefore theoretically impossible to recover the plaintext from the ciphertext
without the pad, because any plaintext is equally likely. For every plaintextp and
for every ciphertextc, there exists a padk that will yield c if applied top—namely
the one obtained ask = p⊕c.

The one time pad therefore offers perfect confidentiality with respect to a
ciphertext-only attack. Its principal drawback is that the key needs to be as long
as the message. If it were easy to send securely such a long pad to the recipient,
one might prefer to send the message in the first place, instead of the pad. In other
words, as a “confidentiality amplifier”, the one time pad does not amplify very
much8.

There is a large family of ciphers that work like a one time pad but replace the
pad with a pseudo-random number generator, whose sequence of pseudo-random
bits k depends on an initial fixed-length keyK. The theoretical unbreakability is
lost, because the bits of the pad’s replacement are no longer of maximal entropy.
If the adversary can predict the pseudo-random sequence, the cipher can be bro-
ken. Ciphers like this, that work by XORing each bit of the plaintextp with the

7This is written∀p,k∈ {0,1} : p⊕k⊕k = p.
8This is not to say it is useless. It may still be useful to time-shift a secure transmission. You

send the courier with the one-time tape now, which takes a day or two, and you can then phone the
Kremlin later at no notice when something serious comes up.

66 Chapter 3. Computer security

corresponding bit of a “keystream”k, belong to the class of thestream ciphers9. A
stream cipher Estream

K is a family of bijections from the infinite setSof all possible
bit strings onto itself:

Estream
K : S→ S.

It should be obvious that any stream cipher based on a keystream generator will
fall to aknown plaintextattack, i.e. one where the cryptanalyst knows that plaintext
p encrypts to ciphertextc and wants to decrypt other ciphertexts encrypted under
the same key. In fact, just as for the one time pad (which is itself a special case of
stream cipher), the keystream10 can be trivially recovered ask = p⊕c.

Block cipherswere originally developed to counter this attack. A block cipher
Eblock

K is a family of bijections from the finite setSlen=b of all bit strings of lengthb
(the block size) onto itself:

Eblock
K : Slen=b → Slen=b.

Because it is a bijection of a finite set onto itself, a block cipher is a permutation
of the setSlen=b. In theory it could be implemented as a randomized lookup table,
but in practice the table would be infeasibly large11. For this reason, the implemen-
tation is based on repeatedly stirring bits around in a somewhat more algorithmic
fashion. But the point is that, because of their more general structure, block ci-
phers can be constructed so that even knowing plenty of(p,c) pairs for a givenk is
insufficient to discover the key itself.

If one needs to encrypt something longer than a block, there exist variousmodes
of operationsuch as “cipher block chaining” to do so in a secure way with respect
to the desired properties. Books such as Schneier [227] have all the details.

3.1.6 Public key cryptography

As we move towards a global communications infrastructure where correspondents
may be separated by thousands of kilometres, it becomes harder and harder to
secure the lower bandwidth channel required for key distribution using physical
means. The revolutionary invention that allows keys to be distributed securely over
an insecure channel ispublic key cryptography, introduced by Diffie and Hellman
in 1976 [90] (the British spy agency CESG claims to have discovered the principle
in 1970, but didn’t tell anyone until much later [98, 268]). Like many of the great-
est ideas, its elegant simplicity allows it to be explained in only a few sentences.

9There also exist stream ciphers not based on pseudo-random keystream generators—the rotor
machines used in World War II [149] being a notable example.

10Though not the original keyK.
11Even for DES, with a block size of 64 bits, the table would have to hold 264 words of 64 bits

each, i.e. 272 bytes, i.e. 4 billion terabytes. And this is still peanuts compared to the equivalent figure
for AES, whose block size is at least 128 bits.

3.1. Confidentiality 67

As before, the cipher is a family of pairs of bijections, with the elements of each
pair being the inverse of each other. Now, however, the bijections in a given pair
are not indexed by the same key: there is one key to select the encryption bijection
and another one to select the decryption bijection, and it is not feasible to derive
the decryption key from the encryption key12. Each prospective recipient of secret
messages chooses her own pair of bijections and makes her encryption key public,
while keeping the decryption one secret. SupposeB wants to send a confidential
message toA: he can encrypt the plaintext using the encryption key thatA made
public. This will yield a ciphertext that can only be decrypted byA’s secret key,
that she never revealed to anyone else. Nobody other thanA will be able to read
the encrypted reply—not evenB who created it. IfA wishes to reply, she needs to
encrypt her answer under a different key—B’s public key in the above case. This
construction removes the necessity for a confidentiality-protected channel to trans-
mit the keys: the secret keys never leave their owners, while the public keys, as their
name implies, can be distributed to anyone without ill effects. If an eavesdropper
acquiresA’s key, all that he will be able to do with it is to send encrypted messages
to her.

There is one remaining vulnerability of this scheme, linked to the fact thatB
could be tricked into accepting a key as belonging toA when in fact it was manu-
factured by an active eavesdropper. We shall examine this important point in detail
when we discuss man-in-the-middle attacks in section3.4.3. For the moment, let
us simply remark that this samekey distribution problem exists to an even greater
degree in the context of conventional, symmetric-key cryptography, and that it is
not a vulnerabilityintroducedby the public key construction.

Diffie and Hellman thought of the principle of public key cryptography, but
could not at the time suggest an implementation with all the properties they de-
scribed—this came a couple of years later with the cipher proposed by Rivest,
Shamir and Adleman [219], later to be known as RSA. What the two original au-
thors did suggest was a “key agreement” scheme, now appropriately known as
Diffie-Hellman, allowing two parties to establish a shared secret over a channel
subject to eavesdropping. This secret could then be used as the key for a symmetric
cipher.

3.1.7 Hybrid systems

Under the hood, public key ciphers are built in a completely different way from
their symmetric key counterparts. They require mathematical structure in order to
provide the properties of a public key system: the public and the private keys must
be mutual inverses, but it must be impossible to derive the latter from the former. To

12It is however feasible to generate a pair of keys that correspond to mutually inverse bijections.

68 Chapter 3. Computer security

this end, problems from number theory, based on modular arithmetic over numbers
that are several hundred digits long, are used as the core of the cipher. To go into
details would lead us well outside the scope of this book; what we want to remark
here is that to encrypt or decrypt a given message with a public key cipher is about
1000 times more computationally expensive than with a symmetric key cipher of
comparable strength13. What is then used in practice is ahybrid cipher: the sender
generates a random session key, encrypts it under the recipient’s public key and
transmits it; the rest of the traffic is then encrypted with a symmetric cipher under
the session key that the two parties now share. This combines the key management
convenience of the public key cipher with the efficiency of the symmetric cipher (at
least asymptotically).

It is interesting to observe that this sort of hybrid cipher is no longer a bijec-
tion—in fact it’s not even a function any more. Since the session key is randomly
chosen at each encryption, encrypting the plaintextP under the public keyK will
yield a different ciphertext every time. (Fortunately, of course, all these ciphertexts
will still decrypt to the same plaintextP.) An advantage of this arrangement is that
known ciphertext attacks become harder. It is no longer possible for the cryptan-
alyst who guesses the plaintext to verify the validity of this guess by encrypting
it under the target public key, because even the correct guess would encrypt to a
different ciphertext than the one observed, unless the random session key were the
same. Note the conceptual similarity between this situation and the technique of
“salting” described in section3.4.1.

3.1.8 Other vulnerabilities

Before closing this introductory section on confidentiality-protecting mechanisms
we should emphasize that the cost of the brute force attack on a cipher is only
anupperbound on the cost of breaking the code, sufficient to dismiss a cipher as
insecure but insufficient to promote it as safe. Especially in the case of a home-
grown cipher, cryptanalysis is likely to find other weaknesses. More importantly,
though, from a systems point of view the cipher is rarely the weakest point, and
most breaches of confidentiality exploit other weaknesses such as protocol failure,

13To compare the strengths of two ciphers, one must in fact compare the effort it takes to break
them. For a properly designed symmetric cipher with no known shortcut attacks, the effort is that
of a brute force search, which is proportional to the cardinality of the key space. With a public key
cipher, instead, one does not try all possible private keys but rather tries to derive the private key
from the public one. This is of course laborious, by design, and typically proved to be as hard as
some well-known difficult mathematical problem, but still not as bad as exhaustive search. For this
reason, the key lengths for a public key cipher will be much longer than those for a symmetric cipher
of comparable strength. Schneier [227, section 7.3, table 7.9] lists pairs of key lengths of similar
resistance for symmetric and public key ciphers.

3.2. Integrity 69

inappropriate key management, implementation defects (e.g. poor random number
generation), physical vulnerabilities and so on.

3.2 Integrity

Integrity is the property that data holds when it has not been modified in unautho-
rized ways. There does not seem to be a generally agreed upon term in the literature
to indicate the threat to integrity; it feels natural to me to suggestcorruption .

As we saw, protecting theconfidentialityof a messagem in transit on a com-
munication channel betweenA andB means ensuring that nobody other thanA and
B can discover the contents ofm. Protecting theintegrity of m under the same cir-
cumstances means ensuring that, once the message leavesA, nobody can alter it
until it reachesB. In practice it is impossible to prevent an attacker who has control
of the channel from altering the message, so what we actually mean is “ensuring
that nobody can alterm withoutB noticing”.

3.2.1 Independence from confidentiality

One might superficially think that confidentiality implies integrity: if you change
one bit of a ciphertextC, the modified ciphertext will certainly decrypt to garbage
and the recipient will notice. Actually this is not always so, and this is particularly
evident for additive stream ciphers, where the ciphertext is obtained by the bit-by-
bit exclusive-or of the plaintext and a pseudo-random key stream. If the attacker
knows the exact format of the message, he will know which bit positions correspond
to a specific field. If he also knows or guesses the plaintext, or at least the relevant
part of it, for example the second field in “I hereby transfer<unknown amount
of money> to <John Smith’s bank account number>”, he may manipulate the
ciphertext to yield the desired plaintext, such as “I hereby transfer<amount of
money still unknown, but who cares> to <the crook’s own bank account>” . The
simple algebra behind this is

guessedPlaintext⊕unknownKeystream= knownCiphertext

from which the attacker extractsunknownKeystream, and

alteredCiphertext⊕nowKnownKeystream= desiredPlaintext

from which the attacker works out whichalteredCiphertextto substitute in the mes-
sage in transit on the channel. This is called anattack in depth. Let us therefore
remember that, in general, neither integrity nor confidentiality implies the other.

Do not take this just as an academic warning. The mistaken belief that confi-
dentiality implies integrity is a genuine problem, and people get this wrong all the

70 Chapter 3. Computer security

time, silly as this may seem to you now after having read the trivial boolean algebra
in this section. A high-profile culprit, which misused a stream cipher for integrity
purposes, is the 802.11 wireless LAN system popularly known as Wi-Fi. This was
first pointed out by Borisov, Goldberg and Wagner [48] (see sectionB.8).

3.2.2 Error-detecting codes

The core idea of integrity protection is to transmit a more robust message by aug-
menting the payload with some appropriate redundancy which the recipient can
check in order to detect modifications. This framework aptly describes the error-
detecting codes such as CRCs (cyclical redundancy checks) that should be familiar
from information theory [131], but here we have an extra twist: the errors we are
trying to detect may be caused not only by random noise but also by malicious
forgery. A code that will detect bit errors in 99.9999% of the cases is probably
good enough for many communications applications, assuming that bit errors hap-
pen randomly; from the security point of view, however, we are in a different sce-
nario: the attacker willactively searchfor that specific 0.0001% of bit errors that
the code cannot detect, looking for any that he might turn to his advantage. Sud-
denly, the probability of failure becomes much higher than 0.0001%.

3.2.3 Hash

An error-detecting code with an external interface similar to that of a CRC, but
suitable for integrity protection, is thecryptographic hash function, sometimes in-
dicated asone-way hashto convey the intuitive meaning that it is easy to compute
the function in the forward direction, but practically impossible to compute it in
the reverse direction. It is a surjection14 from the infinite input setSof all possible
bit strings to the finite setSlen=n of all possible bit strings of lengthn, wheren is
the output size of the hash function (e.g. 160 bits for the Secure Hash Algorithm
SHA-1).

h : S→ Slen=n

Its fundamental property isnon-invertibility: given any hash outputy∈ Slen=n,
it is computationally infeasible to find an inputx ∈ S such that h(x) = y (despite
the fact that there will usually be an infinite number of itemsx with this property).
The idea here is to produce a representative “fingerprint” of any input message; this
way, if the hash output is secure from modifications, it will not be possible for the
attacker to modify the message in a way that still matches the hash.

14Well, at least conceptually it is. Theoretically, though, there is no guarantee thatall elements of
the domain will have a preimage. Most elements ofSlen=n will have infinitely many preimages, but
there could be lonely elements ofSlen=n that no input string generates.

3.2. Integrity 71

An even stronger requirement for a hash function iscollision resistance15: it
is infeasible to find two inputs with the same image (no matter what it is). If one
could do that, then it would no longer be possible to consider hashes as representa-
tive fingerprints of longer strings, and “birthday attacks” such as the one famously
described by Yuval [269] would become possible. Without going into details, that’s
where someone makes you sign an unfavourable document while making you be-
lieve that you are signing a favourable one, thanks to the fact that they both have
the same hash.

We recognize the hash as an “integrity amplifier” in the same sense as we saw
the cipher as a “confidentiality amplifier” in section3.1.4: securing the integrity of
a small bit string, for example by publishing it as a line ad in a newspaper, has the
effect of similarly protecting an arbitrarily long message, like a 10 MB transaction
log that you published on your web page.

One of the canonical warnings that accompany the introduction of error-de-
tecting codes is that we cannot expect errors to concentrate only on the payload,
ignoring the added redundancy. The equivalent observation in the security domain
highlights that the hash works as an integrity amplifier only given a high integrity
channel for bootstrapping purposes; if the attacker is able to modify the hash as
well as the payload, it will be trivial for him to calculate a new hash that matches
the modified message. There exist however two other cryptographic primitives, the
MAC and the digital signature, capable of withstanding that type of attack.

3.2.4 MAC

The MAC, ormessage authentication code, is a bit like a hash parameterized with
a secret key—each key you apply to the MAC gives you a different hash function.
We saw a similar situation with ciphers in section3.1.1: the hash is a surjection,
while the MAC is a family of surjections. You might conceptually view the hash as
a MAC whose key has been curried away with a well-known constant16.

Both sender and recipient need that key: the former to calculate the MAC from
the payload in the first place, the latter to recompute it for verification. Now the
attacker who wants to modify the message can no longer generate a new MAC for
the forgery, because he does not know the key. For the same reason, he cannot
evencheckwhether his forgery matches the old MAC. So this solution does away

15Commonly, but less accurately, also referred to ascollision-freedom. The literal interpretation of
this locution is of course an impossibility given the cardinalities of the input and output sets.

16What happens in practice is usually the reverse: the MAC is implemented from the hash by com-
bining the key and the payload in a complicated way, as in the HMAC construction [162]. Another
way to obtain a MAC from a hash is to encrypt the hash value using a symmetric cipher—this is
simpler to understand but may be more costly to implement in terms of code size and running time,
because one uses both a hash and a cipher.

72 Chapter 3. Computer security

with the need for the low bandwidth, high integrity channel—but note that it now
requires a mechanism to allow sender and recipient to establish a shared secret
key17.

3.2.5 Digital signature

The digital signature is a development of public key cryptography. It attempts to
recapture some of the defining properties of the written signature, namely that (at
least in theory) nobody other than the signer may generate it, and anybody can
verify its validity. Additionally, to avoid cut and paste attacks that are trivial on
bit sequences even if they take some effort on paper artefacts, the digital signature
must depend on the document being signed.

The construction originally proposed by Diffie and Hellman [90] to achieve
this is simple and elegant, and was invented before a mathematical primitive to
implement the underlying cipher could be found (the solution to that came two
years later thanks to Rivest, Shamir and Adleman [219]).

Assume the availability of a public key cipher, as described in section3.1.6
above: userA publishes a public keyKA and holds a private keyK−1

A known only
to herself. Assume furthermore thatP ≡ C, that is to say that the setP of all
plaintexts coincides with the setC of all ciphertexts, so that it is possible to apply
the decryption bijection to elements ofP. It is then possible forA to produce a
“signed” version of messageM ∈ P by exhibiting the following pair:

M,D
K−1

A
(M)

which consists of the message accompanied by its image through the decryption
bijection18. Nobody other thanA knows the decryption bijection, so nobody else
could have generated the signature; at the same time, though, anyone can check its
validity by applying the publicly known encryption bijection EKA

to D
K−1

A
(M), and

verifying that it yieldsM.
This core idea is susceptible of refinements. For a start, there are clear perfor-

mance advantages19 in signing h(M) rather thanM. It is also beneficial to keep a

17Not as bad as it sounds, because the key can be reused many times to protect the integrity of
different messages. So we are not simply trading the requirement for a low bandwidth, high integrity
channel with that for a low bandwidth, high confidentiality channel, but rather with the requirement
for a once-onlyhigh confidentiality channel. Maybe not even that, if the shared secret were estab-
lished through a key agreement scheme like Diffie-Hellman. However, the integrity properties of
the mechanism used to establish the shared secret, whether it is the confidential channel or the DH
exchange, must (almost recursively) be taken into account.

18Recall that, as explained in section1.4, my notation for decryption is DCIPHER
KEY (ciphertext).

19Without loss of security as long as it is infeasible to find collisions for the hash function.

3.2. Integrity 73

clear separation between encryption and decryption on the one hand, and verifica-
tion and signature on the other, despite the fact that the above construction shows
that the second pair of functions can be implemented with the first. Interesting
threats come about when a user makes no distinction between signature and de-
cryption, from the “chosen protocol attack” (someone runs a challenge-response
protocol with you, as in section3.4.3, asking you to decrypt something that they
claim is a random number encrypted under your public key, but in fact they are
making you sign a message saying that you’ll pay them lots of money) to the risks
of legal seizure (the police force you to reveal your secret key under court order
to decrypt messages you received, and can now forge your signature on fake in-
criminating documents20). A convenient way to enforce the separation is to have
different key pairs for encryption/decryption and for signature/verification. There
are also algorithms of a different design where signature is implemented without
resorting to decryption.

3.2.6 Integrity primitives compared

Whenever I explain all this, I find it useful to summarize the differences between
these three integrity-protecting constructions by lining them up in a matrix21 like
table3.1. The main distinction between the various primitives stems from identi-
fying who can generate the code and who can verify it. This in turn determines
the suitability of the construction for a given purpose, and one could add further
columns to list what the extra requirements would be (e.g. a shared key in place) to
achieve given goals.

Who can generate it Who can verify it
Hash Everyone Everyone
MAC Holders of secret Holders of secret
Signature Holder of secret Everyone

Table 3.1.A comparison of integrity-protecting primitives.

A subtle point highlighted by this comparison regards the transferability of the
beliefs held by the verifier of the code. Assume thatB receives a pair(m,c) over

20This cuts both ways, and to some principals this will be a feature, not a bug, in so far as it
provides them withplausible deniability[221].

21The æsthetically-minded reader, seeking an elusive symmetry, may now be wondering about the
missing fourth combination in the table—the one describing an item that everyone can generate and
that only the holder of the secret can verify. A moment’s thought shows that, with some flexibility in
the interpretation of “verify”, this primitive is simply public key encryption. It does not appear in the
table because it is not an integrity primitive.

74 Chapter 3. Computer security

an insecure channel;m is a message purporting to be fromA, while c is an integrity
protecting code; assume furthermore that, upon verification,B finds thatc matches
m. What canB deduce about the genuineness ofm, and can he transfer this belief
to a third partyC?

In the case of the hash,B has no guarantees at all: the message could be a fake
and the hash might have been recalculated by the forger. (The hash is only useful
when its own integrity is guaranteed.)

In the case of the MAC, ifB is correct in assuming that only he andA know
the secret keyK, then he can deduce that the message is genuine. However—and
this is the interesting bit—he cannot transfer this belief to anyone else. He certainly
cannot convince an outsiderC that the message is genuine:B would have to divulge
the key to allowC to check the MAC, but sinceC does not know the realK, as far as
he is concernedB could have easily made up both message and key, and calculated
a new MAC before showing the pair toC. So the fact that the MAC checks proves
nothing toC.

But there’s more: even if we assume thatA, B andC all shared the secret key
K from the start, it is still impossible forB to prove toC that the message he is
showing has not been changed from whatA sent. SinceC gets both message and
MAC from B, B could still have made up the message and recomputed the MAC
with the common key. The same holds in reverse: in fact, as soon as the key is
shared by three parties instead of two, evenB himself can no longer be sure that the
message he received fromA was not modified in transit byC.

The situation changes with the digital signature: the key thatA uses to sign
messages is never shared with anyone, since all that is needed for verification is the
public key. Therefore, if the signature matches the message, it must perforce have
been produced byA22, and this argument is just as convincing to the first recipient
B as to any subsequent principal who obtains the signed message.

In other words, unlike what happened with the MAC,B can show message and
signature to a third partyC and convince him that the message is the one originally
generated byA. This property of digital signatures is often indicated asnon repu-
diation to indicate that, onceA signs a message, she cannot later deny to have done
so, because nobody else could have generated that signature.

22We are sweeping under the carpet a number of problems that may occur in the real world, such
as A temporarily “losing control” of her purse with the signing smartcard; but for this first order
description let’s stick to the idealized behaviour where principals are assumed to be able to keep keys
secret.

3.3. Availability 75

3.3 Availability

Any system that performs its advertised service in a timely fashion when requested
to do so by an authorized user enjoys the property ofavailability . The threat to
availability is calleddenial of service.

An influential analysis of the problem of denial of service is due to Gligor [118,
119], who introduced the concept ofmaximum waiting time (MWT). The system
should advertise the intended MWT for each of the services it offers. Whenever a
user who issued a legitimate request has to wait for longer than the corresponding
MWT, that user is being denied service.

Gligor observes that, while confidentiality and integrity are essentially con-
cerned with what a user is allowed to do (“May she read? May she write?”), avail-
ability is concerned with what the authorized user is actuallyableto do (“Okay, she
is allowed to write, but will it work if she tries?”23).

3.4 Authentication

Authentication is the process of verifying a principal’s claimed identity. It is the
logical step that followsidentification, i.e. establishing who that principal claims
to be. Both steps are necessary to convince the verifier of the identity of her inter-
locutor. (The familiar two-step interrogation of “userid? password?” is the perfect
illustration.) It should be apparent that identification is the easier activity of the
two (one just listens), while authentication is the one where some detective work is
required of the verifier.

Authentication is by necessity a frequent event in distributed systems. Every
day, many times a day, a computerM in your organization will receive an access
request from an entity claiming to be legitimate userA, andM will have to decide
whether to accept or reject the request based on its assessment of whether the bits
that come out of the channel are sufficient proof that the principal at the other end
really isA.

A basic taxonomy of authentication methods is neatly summarized in the tradi-
tional suggestion to check “something you know, something you have or something
you are”, examples of which might respectively be a password, a passport and a fin-
gerprint. This classification is not exhaustive: Gollmann [123], for example, also
lists “what you do” (e.g. keystroke patterns) and “where you are” (potentially of
interest for ubiquitous systems). Imaginative readers may come up with further
suggestions.

23Language purists will delight at the chance of being able to express this as: “She may write, but
can she?”.

76 Chapter 3. Computer security

As far as this introductory survey is concerned, though, we shall concentrate on
the “something you know” approach: verifying knowledge of a shared secret is by
far the most widely used foundation for authentication in computer networks today.

3.4.1 Passwords

Let us therefore assume that a principalA wishes to authenticate herself to a ma-
chineM; A is known toM by her name “A” (this could be the login name) and
can prove her identity by demonstrating knowledge of a secret passwordp that she
previously agreed withM.

The simplest way to demonstrate knowledge of the passwordp is simply to say
it. This is what users normally do to log into a local computer.

The problem here is that, ifM keeps a list all the passwords of its users, this
password file becomes a valuable target for an attacker. Encrypting the file would
bring little benefit, sinceM itself would need the key to decrypt it in order to be
able to check any supplied password; so the attacker who managed to break intoM
could simply steal both the file and the key.

To address this,M may record a hash ofA’s password instead of the password
itself—a technique pioneered by Needham at Cambridge [263] in the 1960s, later
adopted by UNIX and now standard on most modern systems. This means that an
attacker grabbing the list stored onM does not have access to any passwords.

But, despite this improvement, the system still isn’t invulnerable: a more so-
phisticated adversary will mount adictionary attack . Banking on the fact that
many users will choose passwords that are easy to guess (e.g. names of loved
ones, swear words, lines from favourite songs or movies . . .), the attacker gen-
erates hashes of such candidate guesses and checks whether the result matches any
entry in the list stolen fromM. If it does, a password has been found. The guesses
may even be precomputed once and for all and stored in a lookup table indexed
by the hash value; then the attacker can crack on sight any account that used one
of the guesses as its password. Safeguards against this kind of attack, other than
educating users about the choice of proper passwords, include salting (see below)
and artificially slowing down the hash function in order to increase the attacker’s
workload. Morris and Thompson [195] discuss those issues in detail, while a re-
cent study by Yanet al. [267] provides experimental results on the (poor) choice of
passwords even by users who have received specific training.

Salting is the practice of adding random bits to the user-supplied password be-
fore hashing it. These random bits have to be stored onM in the password list
next to the hash value, otherwise the system itself would not be able to regenerate
the hash for comparison even when supplied with the correct password. So this
technique does not prevent the attacker from verifying the validity of a guess, but
it does frustrate precomputation and parallel search. Furthermore, two users might

3.4. Authentication 77

choose the same (poor) password, e.g. “samantha”; without salting, their hash val-
ues would be identical, telling an attacker that the penetration of one account also
opens the door to the other, and also highlighting that the password is so easy to
guess that those two users thought of it independently. Even more interestingly24,
if one of the users with the poor password noticed this circumstance, it would be
trivial for him to abuse the other user’s account.

WhetherA exhibits p or h(p), if this happens in cleartext across the network
(as in Telnet, Rlogin, FTP and in the HTTP Basic Authentication that most web
sites use to password-protect a page) then an eavesdropper can record whatA says
and replay it later to impersonate her. Note that the hash offers no protection here:
the attacker won’t know the actual password, but won’t need it to impersonateA.
To defeat thisreplay attack it is necessary to ensure thatA’s authenticators can not
be predicted from previous ones. This implies, among other things, that they will
have to be always different.

3.4.2 One time passwords

An elegant way to do this using a chain of hashes was originally devised by Lam-
port [167], then implemented as a product (S/KEY) by Bellcore [130] and finally
released as an open specification via a series of Internet RFCs [127, 128, 129]. The
essence of the idea is forA to generate a series of passwordsp0, p1, . . . , pn linked
by the recurrence relation

pi = h(pi+1).

These are computed byA in reverse order, starting from a randomly chosen value
for pn. A keeps the entire list to herself and bootstraps by securely sharingp0 with
M. At the first authentication,A presentsp1 to M. M doesn’t knowp1, but he can
verify that it is genuine by checking whether h(p1) = p0. This procedure extends
by induction to all other passwords in the chain:A just showspi at theith authen-
tication, andM will know its hashpi−1 from the previous round. Eavesdropping
attacks are defeated and so are attempts at stealing the “password file” fromM. The
information held by the server refers only to the past: it cannot be used to recon-
struct the portion of the chain that has not yet been used, and therefore it can be
used for verification but not for impersonation.

Among the disadvantages of the scheme are the need to “reload” aftern au-
thentications, the need forA andM to maintain synchronization (the protocol is
not stateless) and the need forA to store the whole chain of passwords (though,
of course, used passwords can be thrown away). This last requirement might be

24Taking insider fraud into account is still, to some extent, a paradigm shift. Needless to say, this
is a problem. Major security holes go undetected for a long time because of this mindset.

78 Chapter 3. Computer security

traded off against extra computation in the unlikely case thatA prefer to recalculate
the chain frompn at each authentication.

3.4.3 Challenge-response and man-in-the-middle attacks

Authentication can be performed in a stateless manner by using achallenge-
responsestrategy.M sendsA a random numbern which A must return encrypted
under the shared secret keyKAM.

M → A : n
A→M : EKAM

(n)

Note that in this case a MAC, which is not invertible, would serve the same purpose
as the encryption, since there is no need ever to decrypt the result; to verify,M
simply performs the same encryption and compares the result, as per Needham’s
technique described in section3.4.1.

This is the model originally used for air force IFF (identify friend or foe) sys-
tems, which led to the development of block ciphers. Jet fighters move at such
speed that it is not possible to rely on visual identification to decide whether the dot
on the radar is one of ours that should be protected, or one of theirs that should be
shot down. If the fighters from the same side share a secret key, they can challenge
each other by radio using the above protocol, and fire at those who can’t prove
ownership of the key.

The method is safe from passive replay attacks, but it remains vulnerable to
more sophisticatedactive attacks, such as “man-in-the-middle”. Anderson [11,
section 2.2.2] relates of such an attack in the course of a battle between the South
African and Cuban air forces at the border between Namibia and Angola and, with
characteristic wit, labels it “MIG-in-the-middle”. (The story later turned out to be
apocryphal, but it still makes the point nicely.)

A

M
1 2

3
4

5
6

Figure 3.1. Anderson’s “Mig-in-the-middle” attack.

Assume that the white side has an aircraftA and an anti-aircraft gunM that
share a key. WhenM sees any aircraft it challenges it, and fires at it unless it re-
sponds correctly. The black side waits until the white plane attacks black territory

3.4. Authentication 79

and at that point it sends a black plane to raid the white headquarters (figure3.1).
The black plane gets challenged (1) by the white gunM, so it relays (2) the chal-
lenge to the black anti-aircraft gun that spottedA; the black gun, in turn, challenges
(3) A, who provides (4) the correct response. This is relayed (5) back to the black
plane, who answers (6)M’s challenge correctly, is let through unharmed and pro-
ceeds to carpet-bomb the white headquarters.

Similar attacks apply to many other situations, such as the one described in
section3.1.6where two users who do not share a secret establish a confidential
communications channel using public key cryptography. HereA and B are the
honest players, who believe they are having the exchange pictured in figure3.2,
which is safe from passive eavesdropping attacks.

1

3

4

2

A B

(1) A→ B : KA; A enablesB to send secret messages to her.

(2) B→ A : KB; B returns the favour.

(3) A→ B : EKB
(mA); A sends secret messagemA to B.

(4) B→ A : EKA
(mB) B replies with secret messagemB.

Figure 3.2. WhatA andB think is happening.

Unfortunately for them, the malicious network operatorN intercepts their mes-
sages and substitutes them with forgeries. He manufactures two fake key pairs,
(Kα,K−1

α) and(Kβ,K
−1
β), the first to pretend toB that he isA, and the second to

pretend toA that he isB. While A andB believe that they are having the exchange
pictured in figure3.2, N sits between them like the two-faced god Janus and what
actually happens is shown in figure3.3.

To avoid this problem,A andB need to ensure that the public keys they receive
from each other are genuine. One way to do this is for each principal to dissem-
inate a hash of her public key using a higher integrity channel. Some people, for
example, myself included, list the hash of their public key (known as the key’s
fingerprint) on their business card; of course this only helps if your interlocutor
receives your business card before having to send you a secret message. It doesn’t
work if someone you never met wishes to contact you in confidence after having

80 Chapter 3. Computer security

1.1 1.2
2.2 2.1

3.1 3.2

4.2 4.1
A N B

(1.1) A→ N : KA; A thinks she is sending her public key toB. Actually, the

key is intercepted byN.

(1.2) N→ B : Kα; N saves awayA’s key and sendsB another public key he

made himself, for which he has the matching private key.

(2.1) B→ N : KB; The same thing happens . . .

(2.2) N→ A : Kβ; . . . in the opposite direction.

(3.1) A→ N : EKβ
(mA); A thinks she is sendingB a secret message, so she encrypts

it under what she believes to beB’s key. But this is in fact

one ofN’s fake keys, soN can decrypt what he gets and

readmA.

(3.2) N→ B : EKB
(mA); N re-encryptsmA underB’s genuine key and sends it along

to the intended recipient, to whom everything appears as

normal.

(4.1) B→ N : EKα
(mB); The same thing happens . . .

(4.2) N→ A : EKA
(mB); . . . in the opposite direction.

Figure 3.3. What is actually happening.

read your web page.
A high integrity channel with more widespread distribution than one’s own

business card is a book25; banking on this, a group of researchers at Cambridge,
led by Anderson, produced a book,The Global Trust Register[20], containing a
list of public key hashes26. Of course such a book has little hope of containing the
keys of all the users in the world, but it may be helpful in bootstrapping a “web
of trust”, as used by Zimmermann’s PGP27 [270]. In PGP’s model all the users,

25This is the reason why I listed the fingerprints of my keys on pagexx.
26This had been theorized even in the original Diffie-Hellman paper [90], but doing it in practice

raised a number of interesting issues. The act of publishing this book was meant by its authors to be
as much a provocation as a useful service.

27PGP, which stands forPretty Good Privacy, is a public key cryptography program that is the de
facto standard for email encryption. Originally released as open source for MS-DOS in 1991, and at

3.4. Authentication 81

as peers, mutually certify the validity of the keys of their interlocutors. Users may
thus obtain unreliably certified keys over insecure channels, as long as they can
build “chains of trust” starting from people they know and leading to those keys.

The “signature of Alice on Bob’s key” is actually a signature on the combina-
tion of Bob’s public key and Bob’s name. It means: “I, Alice, solemnly certify
that, to the best of my knowledge, this key and this name do match”. To Char-
lie, who must decide on the validity of Bob’s key, this statement is only worth as
much as Alice’s reputation as an honest and competent28 introducer; in fact, PGP
lets you assign a rating (denoted as “trust level”) to each introducer, as well as a
global confidence threshold that must be reached (by adding up the ratings of all
the introducers) before a key can be considered as valid as one that you signed
yourself29. For example you may require two signatures from marginally trusted
introducers, or just one from a fully trusted one; but someone with a higher para-
noia level might choose five and two respectively. The supremely paranoid PGP
users (I am one, and I know several others) do not place any great deal of trust in
the competence of external introducers and truly rely only on keys whose validity
they personally verified.

In this modelThe Global Trust Registeracts as a supplementary introducer,
with the scientific reputations of its authors as guarantees of honesty and compe-
tence. Because it certifies a number of “important” keys (e.g. keys of crypto pio-
neers and activists who are likely to have signed many other keys in their respective
communities), there is a non-zero chance that, with only a couple of degrees of sep-
aration, it will be possible to form chains connecting the desired key with one or
more of the ones listed in the book.

the time the only military-grade encryption software widely available to civilian users, it was quickly
ported to every imaginable platform and is now sold as a commercial product by Network Associates.

28These two qualities are completely independent, and both are required for the introducer to be
trustworthy. A dishonest introducer might intentionally sign a falsehood such as “This key belongs
to the president of ABC Bank” in preparation for a fraud, while an incompetent one might be conned
into signing that same falsehood because he is insufficiently careful in his verification of the support-
ing credentials of the principal who requests his signature.

29Note also that the fact that a key is valid does not imply that it is trusted. To believe that Alice’s
key is valid is to believe that it really belongs to Alice. To believe that it is trustworthy (for introduc-
tions) means to believe that Alice is honest and competent at key management. It will be easy for the
reader to come up with examples of cryptographically illiterate acquaintances whose keys should be
taken as valid but untrusted.

82 Chapter 3. Computer security

3.5 Security policies

3.5.1 Setting the goals

In most engineering disciplines it is useful to clarify the requirements carefully be-
fore embarking on a project. Such advice may sound so obvious as to border on
the useless, but it is of special relevance to computer security. Firstly because, as
shown by Anderson [8], it is all too often ignored: diving straight into the design of
crypto protocols is more fascinating for the technically minded. Secondly because
security is a holistic property—a quality of the system taken as a whole—which
modular decomposition is not sufficient to guarantee30. It is thus important to un-
derstand clearly the security properties that a system should possess, and state them
explicitly at the start of its development. As with other aspects of the specification,
this will be useful at all stages of the project, from design and development through
to testing, validation and maintenance.

The security policy is a set of high-level documents that state precisely what
goals the protection mechanisms are to achieve. It is driven by our understanding
of threats, and in turn drives our system design. Typical statements in a policy relat-
ing to access control describe which subjects (e.g. users or processes) may access
which objects (e.g. files or peripheral devices) and under which circumstances. It
plays the same role in specifying the system’s protection properties, and in eval-
uating whether they have been met, as the system specification does for general
functionality. Indeed, a security policy may be part of a system specification, and
like the specification its primary function is to communicate.

Because the term “security policy” is widely abused to mean a collection of
vapid managerial platitudes, there are three more precise terms which have come
into use to describe the specification of a system’s protection requirements.

1. A security policy modelis a succinct statement of the protection properties
which a system, or generic type of system, must have. Its key points can
typically be written down in a page or less. It is the document in which
the protection goals of the system are agreed with an entire community, or
with the top management of a customer. It may also be the basis of formal
mathematical analysis.

2. A security targetis a more detailed description of the protection mechanisms
which a specific implementation provides, and of how they relate to a list of
control objectives (some but not all of which are typically derived from the
policy model).

30Connecting secure components together does not necessarily yield a secure system.

3.5. Security policies 83

3. A protection profileis like a security target but expressed in an implementa-
tion-independent way to enable comparable evaluations across products and
versions. This can involve the use of a semi-formal language, or at least of
suitable security jargon. The protection profile forms the basis for testing and
evaluation of a product.

3.5.2 The Bell-LaPadula security policy model

The first and most influential security policy model was proposed in 1973 by Bell
and LaPadula [29]. The US military had developed a system for the classification
of sensitive documents (based on the well-known hierarchy of OPEN, CONFI-
DENTIAL, SECRET and TOP SECRET) and rules that prevented officers with a
lower clearance from reading data in documents of higher classification. Bell and
LaPadula were trying to enforce this information flow policy, also known as “mul-
tilevel security”, in computer systems. They boiled everything down to two rules
that every object access should obey:

1. (No Read Up, or “simple security property”.) No process may read data at a
higher level.

2. (No Write Down, or “*-property”.) No process may write data to a lower
level.

The first rule, as the name suggests, is simple to understand: the cleaner is not
allowed to read the documents in the general’s safe. But the second rule, despite
being less intuitive, is also necessary. It prevents the general from leaving his im-
portant documents on his desk (a “lower level” area compared to his safe) whence
the cleaner could obtain them without violating the simple property.

This simple formalization captures the essence of “multilevel security”. But
the methodology itself merits attention. Once appropriately modelled, the system
can be represented as a state machine. Then, starting from a secure state, and
performing only state transitions allowed by the rules of the policy model, one
is guaranteed to visit only secure states for the system. This allows one to derive
security proofs. (Amoroso [7] gives a good description of this process, with worked
examples.)

This process can be applied independently of the particular policy, as long as
the policy itself is consistent. This idea of how to model a security policy formally
was a significant and influential contribution from Bell and LaPadula, perhaps as
important as the introduction of the BLP policy model itself.

An important concept associated with this modelling strategy is that oftrusted
computing baseor TCB, which is the controlling core of the system that makes sure

84 Chapter 3. Computer security

that only the allowed transitions ever occur. More formally, the TCB is defined as
the set of components (hardware, software, human, ...) whose correct functioning
is sufficient to ensure that the security policy is enforced—or, more vividly, whose
failure could cause a breach of the security policy. The goal of formalization is to
make the security policy sufficiently simple, in order for the TCB to be amenable
to careful verification.

3.5.3 Beyond multilevel security

It must however be appreciated that not all security policies are sets of rules about
access control. There are many contexts in which the aspect of greatest interest in
the system is not access control but authentication, or delegation, or availability—
or perhaps a combination of those and other properties. The Biba [33] and Jikzi
[16] policies, for example, and several others that I discuss at greater length with
Anderson and Lee in [17], are cases where integrity matters more than access con-
trol. These are not just a matter of controlling write access to files, as they bring
in all sorts of other issues such as reliability, concurrency control and resistance
to denial-of-service attacks. Policies for key management and certification, which
we shall encounter in sectionB.3, are further examples that have no relationship to
multilevel security or access control.

On a more general level, we may speak of “security policy” whenever a consis-
tent and unambiguous specification is drawn stating the required behaviour of the
system with respect to some specific security properties.

A security policy is a specification of the protection goals of a system. Many
expensive failures are due to a failure to understand what the system security policy
should have been. Technological protection mechanisms such as cryptography and
smartcards may be more glamorous for the implementer, but technology driven
designs have a nasty habit of protecting the wrong things.

There exists a spectrum of different formulations for security policies, from the
more mathematically oriented models that allow one to prove theorems, to informal
models expressed in natural language. All have their place. Often the less formal
policies will acquire more structure once they have been developed into protection
profiles or security targets and the second- and third-order consequences of the
original protection goals have been discovered.

The book, and this freely available extract, are
copyright © 2002 by Frank Stajano.
All rights reserved.

Frank Stajano (University of Cambridge)
Security for Ubiquitous Computing
John Wiley and Sons, Ltd
Wiley Series in Communications Networking & Distributed Systems
ISBN: 0-470-84493-0
Hardcover; pp. 267 (xx + 247)
Publication date: 2002-02-12
RRP: 34.95 GBP (UK); 59 EUR (rest of Europe); 60 USD (USA)
http://www-lce.eng.cam.ac.uk/~fms27/secubicomp/

Page 1 of 1Security for Ubiquitous Computing

2002-04-24file://Z:\secubicomp\copyright.html

