
On the value of hybrid security testing

Saad Aloteibi and Frank Stajano

Computer Laboratory
University of Cambridge

{firstname.lastname}@cl.cam.ac.uk

Abstract. We propose a framework for designing a security tool that
can take advantages from current approaches while increasing precision,
scalability and debuggability. This could enable software developers to
conduct comprehensive security testing automatically. The approaches
we utilise are static, dynamic and taint analysis along with fuzzing. The
rationale behind this is that the complexity of today’s applications makes
the discovery of their vulnerabilities difficult using a single approach.
Therefore, a combination of them is what is needed to move towards
efficient security checking.

1 Introduction

It is well known that ensuring the security of an application usually escapes
software producers’ task list during development [1]. Increasing complexity, ag-
ile approaches, marketing pressure [2] and other factors could all explain why
security is not initially considered. After all, discovering a security vulnerability
in an already shipped product can also be economically expensive for vendors
either in terms of the cost of patching a single vulnerability, as in Microsoft
cases [3], or it could negatively affect their market value when such vulnerabili-
ties become public [2]. Hence, discovering application vulnerabilities is surely of
interest to both security researchers and developers but the difference is on their
priorities. Whilst, security researchers would like to put the code under their mi-
croscope and examine it precisely after having modelled the threats associated
with their application, developers would not support this for obvious business
reasons and appear willing to sacrifice soundness. Unfortunately, current secu-
rity testing tools do not accommodate such conflicting priorities in an efficient
manner. In this paper, we propose a framework for an automated testing tool
that takes into consideration the business needs of software houses while pre-
serving a conservative view. This is done by blending the strengths of current
testing approaches and debugging techniques as well as carefully organising this
combination to maximise the benefits.

2 Current approaches

2.1 Static analysis

Static analysis tools emulate the complier principles to scan the source code
for possible anomalies. Techniques include simple search functionality [4], syn-

On the value of hybrid security testing 207

tactical examination [5, 6] and abstract interpretation [7]. However, all of these
suffer from the trade- off between relaxing the tool so that complex software
can be analysed while accepting a huge number of false alarms or conduct-
ing deeper analysis, which may come at the price of scalability. For example,
Flawfinder1 [5] incorporates about 160 rule-sets of potential vulnerabilities that
include buffer overflows, format string problems, race conditions and others.
Code is then matched against these rules, and hits are reported to the user in a
ranked order. Applying Flawfinder to complex software as Open Office resulted
in 13,090 warnings. Scanning through these would require a considerable amount
of man hours, not to mention the high volume of false positives. Nevertheless,
the static analysis approach has the advantage of covering the whole code with-
out the need for executing the program, which gives it an advantage over other
methods [8].

2.2 Dynamic analysis

The idea here is to monitor the program behaviour during executions so that
precise judgments about the existence of a problem can be made. An example of
this is program profiling, where the control flow paths of different test cases are
analysed in order to identify codes that may need to be optimised to increase
performance or may have latent problems [9]. Although this provides precise
results compared with static analysis, it is thought to be inefficient in providing
a high level of assurance for two reasons. Firstly, it depends on the test case
that the program will run. So, generalisation about the analysis results cannot
be made since the monitored behaviour would only apply for this specific test
case and not for every possible run as in static analysis. Secondly, examining the
behaviour of the program when executing typical input files is not enough on its
own since vulnerabilities are usually triggered by coordinating changes that are
difficult to produce using this approach.

2.3 Fuzzing

Conceptually, fuzzing can be regarded as a form of dynamic analysis. The main
principle here is to provide unexpected inputs to the program and monitor its
behaviour for the sake of catching bugs [10]. These inputs could be generated
randomly2 or based on grammatical rules that govern the inputs [11]. Interest-
ingly, fuzzing has proved to be effective in revealing vulnerabilities and is being
deployed as a component of the development process, as in Microsoft Security
Development Life-cycle [12], and also by hacker communities [13]. However, it
also inherits the problems of dynamic analysis since code coverage is not guaran-
teed and because it is highly dependent on the test case provided. Furthermore,
fuzzing would be more effective if it were actually directed towards possible at-
tack points which may have unhandled exceptions. Fuzzing alone cannot achieve
this and would need to be made smarter by other means.

1 We used version 1.27.
2 This could be done by taking a valid input file and randomly change bytes on it.

208 Saad Aloteibi and Frank Stajano

3 Hybrid security testing architecture

If we examine software vulnerability reports, we will find that the majority of
them are triggered by maliciously crafted inputs. This root cause raises two
questions:

– What is the input that triggers the problem?
– What is the instruction that executes the attack?

Static
analysis

Source code

attack points

Taint
analysis

Execution
path check

Test cases

Fuzzing guide

Fuzzer
Constraint

solver
Fuzzed files

Fig. 1. Hybrid security testing architecture. The fuzzing guide includes flow informa-
tion, vulnerable instructions and the tainted file.

Neither one of the aforementioned approaches can answer these questions
if performed alone. Static analysis might be a good candidate for the second
question but would be poor at the first. Dynamic analysis and fuzzing may
provide an error-revealing input but it would be the developer’s task to identify
the cause of the flaw, which may not be trivial. In our framework, we aim to
provide an answer to both questions. Initially, we concentrate on identifying
codes that may cause a security breach, even with negligible probability. This
is done statically by reasoning over the whole source code. We do not aim for
precision here since each warning would automatically be checked at later stages
to assess its severity, so we would accept a high rate of false positives and aim to
keep the volume of false negatives low. Achieving the former goal would require

On the value of hybrid security testing 209

three elements. Firstly, a test case that exercises the suspected code3 would
need to be provided. Secondly, it is important to pinpoint which bytes from the
test case are used at this particular attack point. Thirdly, these bytes need to
be changed to different values that may uncover the vulnerability. For the first
element, a corpus of test cases could be provided by the user during testing or
it could be crawled from the Internet. For the second, we utilise the concept
of taint analysis4 in order to map between input bytes and the attack point
that uses them so they can be mutated. For the third, it is important to collect
information about the data type of those bytes that are used at each attack
point so that the fuzzer can change them to their maximum, minimum and,
also, random values. This would not guarantee that latent vulnerabilities would
be uncovered by these values since it is still probabilistic. However, having such
information is still beneficial. Figure 1 illustrates the proposed structure.

3.1 Scenario description

Firstly, a program would be analysed using the static analysis component. This
would result in a list of attack points that could be ranked according to their
seriousness and would be fed to the taint analysis stage. Then the user, or the
web spider, would be asked to provide a test case for the taint analyser so that
bytes that are used at each attack point and at flow control statements could be
tagged for later use. Before this, a check for the feasibility of the test case would
be conducted. That is, if test case B follows the exact execution path as did
test case A, which was used previously, then the tool should not continue with
B as it is unlikely it would help in discovering new vulnerabilities or expanding
the coverage. The taint analyser would then produce two types of information.
Firstly, a list of the attack points that are used at this specific test case and the
associated bytes with their data type. Second, a list of tainted bytes that are
used at flow control statements. The first list would be an input to the fuzzer,
which would take the analysed test case as well. The fuzzer’s job is to change the
tagged bytes that are used at each single attack point to at least three values
(maximum, minimum and random) and produce fuzzed files for each attack
point. The reasons behind this are twofold. Firstly, we would like to identify the
exact cause of the bug if it exists and, therefore, these points are considered
individually. This is similar in concept to delta debugging. Secondly, changing
only specific bits would ensure that the generated file would be syntactically valid
and, hence, pass the initial parser check. The resulted fuzzed files would then be
tested by debugging tools for bugs detection. The second list produced by the
taint analyser would be used by a constraint solver along with the tainted file,
so that we could automatically expand the coverage of a single test case without
the need for using different ones. The expanded test cases would then be checked
to decide whether or not such an execution path has been explored previously.

3 Some might refer to this as a sensitive sink or an attack point.
4 Taint analysis aims to identify user-driven data that affect values used at security

critical instructions or flow control statements.

210 Saad Aloteibi and Frank Stajano

3.2 Essential feature

It is quite difficult with the current fuzzing techniques to decide when enough
testing has been performed, either because of the code coverage problem or due
to the lack of attack points identification. In our approach, the logging of the
following information is required:

– What should be fuzzed? which would be obtained from the static analysis
component.

– What has been fuzzed? which is a result of the fuzzer component.

If all the attack points identified initially have already been fuzzed, then the user
would be notified that testing has been completed and no further vulnerabilities
can be detected. If there are some points that the provided test cases cannot
reach, then users would at least know that the testing process did not cover
the whole code and further procedures are needed to assure the security of the
application.

3.3 Motivated example

In the following, we present a security vulnerability that has been detected in the
Open Office suite using this approach in manual settings. It is worth mentioning
that it is remotely exploitable and has been proved by the developer.

1 switch (nOpcode) {
2 // has to pass 131 cases and go to d e f a u l t to reach the code
3 default :
4 // needs not to s a t i s f y 11 i f s ta tements and go to the e l s e

branch
5 // nDataSize type i s unsigned long
6 s a l u I n t 3 2 nTemp ;
7 ∗pPict >> nTemp ;
8 nDataSize = nTemp ;
9 nDataSize+=4;

10 }

This example illustrates a clear case of a programmer not following basic
secure coding principles. That is, since nDataSize is used for allocating memory
space and its value is calculated from untrusted input, then it is obvious that
it must have been carefully bounded. To exploit this flaw, an attacker should
modify the variable nOpcode to a particular value that would make the offending
code reachable then change the nTemp to its maximum value (0xFFFFFFFF).
This value will be assigned to nDataSize and then would result in integer overflow
at nDataSize+=4 statement. The attacker would be able to direct the program
to read from a specific location of his choice. Our proposed approach should be
able to detect this problem. Firstly, the static analysis tool should produce a
warning about the statement at line 9 for possible integer overflow since it is
used in memory allocation. The taint analyser would show that nTemp is used

On the value of hybrid security testing 211

at this attack point and pinpoint which bytes correspond to it in the input file.
The fuzzer would change only these bytes to the maximum value and, hence,
produce the conditions necessary to reveal this bug. The constraint solver would
also receive the location of nOpcode in the input file and, therefore, the required
constraints to reach this code could be negated.

4 Related work

A relevant study done by Lanzi et al. proposed a similar idea [14]. However, their
use of static analysis is only to acquire basic knowledge about the target appli-
cation since they focused on executables. This was done via the construction
of inter-procedural control flow graphs and loop identifications. Another study
was conducted by Ganesh et al., who assumed that users have in mind a set of
suspicious areas that they want to test [15]. By default, their method is config-
ured to deal with system and function calls as such. This choice is logical since
these libraries are mostly developed by different people and programmers may
not understand some of the necessary preconditions that the library developers
assume programmers should do. Nevertheless, this method completely depends
on the provided test cases. That is, checks for attack points would be conducted
for only the provided file but not for the whole program, which may in turn give
a false sense of security. Furthermore, the identification of attack points is actu-
ally the heart of the problem and leaving it on the user is not desirable. Others
in academia [8] and in the commercial field have also briefly and theoretically
considered the benefits of merging only static and dynamic analysis.

5 Conclusion

If we want to build a robust security testing tool, we must understand that nei-
ther one of the current approaches can do this alone. Static analysis would pro-
vide code coverage but would also present results that would need to be filtered,
requiring considerable effort. Dynamic solutions, including fuzzing, would bring
specific results that would not be generalisable. Designers of security testing
tools should also take the business needs of software developers into considera-
tion without sacrificing completeness. We show that combining static, dynamic
and taint analysis along with fuzzing can be more effective in covering the whole
program conservatively while reducing the needs for post-processing. Equally
important, we highlight the need for identifying the exact source of the bug so
debugging can be efficient. Furthermore, we show that it is necessary to inform
the user about whether or not sufficient fuzzing has been done.

Bibliography

[1] Pistoia, M., Erlingsson, U.: Programming languages and program analysis
for security: a three-year retrospective. SIGPLAN Not. 43(12) (February
2009) 32–39

[2] Telang, R., Wattal, S.: Impact of software vulnerability announcements
on the market value of software vendors - an empirical investigation. In:
Workshop on the Economics of Information Security, Harvard University,
Cambridge, MA (2005) 677427

[3] Howard, M., Leblanc, D.: Writing Secure Code. Microsoft Press, Redmond,
WA, USA (2001)

[4] Chess, B., McGraw, G.: Static analysis for security. Security Privacy, IEEE
2(6) (2004) 76–79

[5] Wheeler, D.A.: Flawfinder

[6] Viega, J., Bloch, J.T., Kohno, Y., McGraw, G.: ITS4: A static vulner-
ability scanner for C and C++ code. In: Proceedings of the 16th Annual
Computer Security Applications Conference. ACSAC ’00, Washington, DC,
USA, IEEE Computer Society (2000) 257

[7] Wagner, D., Foster, J.S., Brewer, E.A., Aiken, A.: A first step towards
automated detection of buffer overrun vulnerabilities. In: In Network and
Distributed System Security Symposium. (2000) 3–17

[8] Ernst, M.D.: Static and Dynamic Analysis: Synergy and Duality. In: Work-
shop on Dynamic Analysis, Portland, OR, USA (May 2003) 24–27

[9] Reps, T., Ball, T., Das, M., Larus, J.: The use of program profiling for soft-
ware maintenance with applications to the year 2000 problem. In: Proceed-
ings of the 6th European SOFTWARE ENGINEERING conference held
jointly with the 5th ACM SIGSOFT international symposium on Foun-
dations of software engineering. ESEC ’97/FSE-5, New York, NY, USA,
Springer-Verlag New York, Inc. (1997) 432–449

[10] Sutton, M., Greene, A., Amini, P.: Fuzzing: Brute Force Vulnerability Dis-
covery. Addison-Wesley Professional (2007)

[11] Godefroid, P., Kiezun, A., Levin, M.Y.: Grammar-based whitebox fuzzing.
In: Proceedings of the 2008 ACM SIGPLAN conference on Programming
language design and implementation. PLDI ’08, New York, NY, USA, ACM
(2008) 206–215

[12] Microsoft Corporation: The Microsoft Security Development Lifecycle
(SDL): Process Guidance.

[13] Microsoft Corporation: Automated penetration testing with white-box
fuzzing.

[14] Lanzi, A., Martignoni, L., Monga, M., Paleari, R.: A smart fuzzer for x86
executables. In: Proceedings of the Third International Workshop on Soft-
ware Engineering for Secure Systems. SESS ’07, Washington, DC, USA,
IEEE Computer Society (2007) 7

On the value of hybrid security testing 213

[15] Ganesh, V., Leek, T., Rinard, M.: Taint-based directed whitebox fuzzing. In:
Proceedings of the 31st International Conference on Software Engineering.
ICSE ’09, Washington, DC, USA, IEEE Computer Society (2009) 474–484

