
Privacy-Enabling Social Networking
Over Untrusted Networks

Jonathan Anderson
Computer Laboratory

University of Cambridge
jra40@cl.cam.ac.uk

Claudia Diaz
ESAT/COSIC
K.U. Leuven

claudia.diaz@esat.kuleuven.be

Joseph Bonneau
Computer Laboratory

University of Cambridge
jcb82@cl.cam.ac.uk

Frank Stajano
Computer Laboratory

University of Cambridge
fms27@cl.cam.ac.uk

ABSTRACT
Current social networks require users to place absolute faith
in their operators, and the inability of operators to protect
users from malicious agents has led to sensitive private in-
formation being made public. We propose an architecture
for social networking that protects users’ social information
from both the operator and other network users. This archi-
tecture builds a social network out of smart clients and an
untrusted central server in a way that removes the need for
faith in network operators and gives users control of their
privacy.

Categories and Subject Descriptors
C.2.2 [Computer – Communication Networks]: Net-
work protocols—Applications; C.2.4 [Computer – Com-
munication Networks]: Distributed systems—Client /
server, distributed applications, distributed databases; E.1
[Data Structures]: Distributed data structures, Graphs
and networks; E.3 [Data Encryption]: Public key cryp-
tosystems, Standards; K.6.5 [Management of Comput-
ing and Information Systems]: Security and Protection

General Terms
Design, Performance, Security

Keywords
Social networks, privacy, distributed access control

© 2009 ACM. This is the author’s version of the work. It is posted
here by permission of ACM for your personal use. Not for redistri-
bution. The definitive version is to appear in the Proceedings of the
Second ACM SIGCOMM Workshop on Social Network Systems,
2009.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WOSN’09, August 17, 2009, Barcelona, Spain.
Copyright 2009 ACM 978-1-60558-445-4/09/08 ...$5.00.

1. INTRODUCTION
Many may not think about it, but using a social network

ought to be a sobering activity, as it requires the user to
place absolute faith in the Social Network Operator (SNO).
First, the social network user provides the SNO with a great
deal of personal information which an attacker could use
to answer personal knowledge questions and thus imperson-
ate the user [17]. Next, the user tells the SNO who their
real-life friends are, which is highly valuable information to
those conducting targeted phishing attacks [9]. The user
then posts comments and photographs of which some SNOs
may claim ownership. Finally, even if it they are legal and
appropriate in context, these comments and photographs
could cause material harm to the user should they come to
light in another context [19] and thus expose the user to the
threat of blackmail [16].

SNOs have databases with such information for millions of
users, and their incentives—mostly pertaining to growth—
may not be aligned with those of their users. Users wishing
to protect their personal information must have alternatives
which do not rely on the all-knowing SNO: no matter how
incompetent or wicked a network operator is, users should be
able to expect that their private information is only shared
with others when they desire it.

The desire to remove our dependance on the SNO might
lead us to consider distributing the central server into a peer-
to-peer system. We believe that this approach could have
important benefits if we concern ourselves with anonymity
properties (invisibility, unlinkability, etc.), but anonymity
is well beyond the scope of the current work, as is the chal-
lenge of building a reliable, secure and yet high-performance
distributed network among untrusting peers.

Instead of building a distributed system, we ask the ques-
tion: can we define a privacy-enabling architecture for so-
cial networking that takes advantage of the simplicity and
performance of the centralised client/server model? This
architecture should protect personal information from both
the SNO and other users, including personal details such
as name, gender and contact information, the presence of
friendship links and the amount of information that a user
has stored in the network. This information must be pro-
tected from a number of threats and attackers; we propose a
threat model for users’ social information and a set of system
requirements in Section 2.

Current social networks already attempt to protect this
information from other users, but we propose an architec-
ture in Section 3 that would also protect private information
from the operator and its partners, ensuring that invasive
features [20] and malicious applications [14] do not expose
users’ private information.

We describe our proof-of-concept implementation of some
of the architecture’s features in Section 4 and discuss the ex-
pected performance of the system, including measurements
of some functionality, in Section 5.

2. REQUIREMENTS
The requirements for a privacy-enabling social network

are twofold: it must safeguard the privacy of its users while
providing the social utility that they have become accus-
tomed to and rightfully expect to increase as the technology
matures.

2.1 Privacy Requirements
The users of a privacy-enabling social network will ex-

pect the system to protect their personal information from
unauthorised access. Personal information includes both
content (profile information, messages, photos, etc.) and
links (friendship, group membership, social browsing his-
tory, etc.). The system should protect this information from
two types of attackers: the network operator and other net-
work users.

The operator of a centralised social network or the under-
lying network infrastructure is a powerful adversary. In a
centralised system, we cannot prevent the SNO from per-
forming traffic analysis or denial of service attacks, but we
can address the threats of the operator viewing or modifying
user information surreptitiously.

Other users of the social network have more limited abili-
ties than the network operator: they cannot observe all the
actions of other users within the network. We can, there-
fore, act to mitigate their potential threats. The most ob-
vious threat is simply that they might view content which
they are not authorised to view, but our system should also
prevent them from:

• learning about the existence of content to which they
do not have access;

• learning social graph data (e.g. friendship links) of
other users and

• modifying or deleting another user’s content.

2.2 Functional Requirements
While respecting these privacy requirements, a social net-

work must enable users to interact with each other via so-
cial links, direct communication, shared content and other
means which we cannot currently envision.

2.2.1 Extensibility
We cannot predict the innovative ways in which users will

adapt the network to their needs [5]; our core task should be
to create a social API rather than merely a fixed set of fea-
tures. The proposed client architecture should allow third-
party developers to provide applications which enhance the
functionality of the network and users to install such applica-
tions without yielding control of their personal information.

2.2.2 Social Links
In order for a social network to be social, it must support

interaction among friends, family, colleagues and acquain-
tances. In order to establish connections, a user of a social
network must advertise themselves to other users. By de-
fault, users of a site should be invisible to all other users, but
they should be able to advertise themselves in three ways:

1. By making some personal information (e.g. name,
photo) available to the entire Web;

2. By sending social network information via existing com-
munication channels (e.g. IM, e-mail);

3. Via social relationships in the network itself.

The first method is similar to how users currently find each
other on social networks, whereas the second method is a
way to bootstrap a social network from existing networks,
which some of today’s social networks do not provide.1 The
third is the most powerful – at the application layer, within
a secure communications channel, users could “suggest” re-
lationships to their friends based on e.g. common interests
or background. This would provide similar functionality to
mechanisms on existing social networks without revealing
information to the SNO.

A function which a privacy-enabling social network should
provide—and which current social networks do not–is a means
for users to bind online identities to those of their real-world
friends. Today’s social networks are already used to im-
personate important politicians for comedic purposes [13],
but the potential to use social networks for highly targeted
phishing attacks is tremendous. Users should therefore be
provided with an easy-to-use yet cryptographically strong
means of verifying identity using out-of-band signalling (in
person, over the phone, etc.).

2.2.3 Posting Personal Information
Posting personal content in a traditional client-server model

is as straightforward as uploading the content to the server
and providing other users with access to it. If the server
is untrusted, however, we must take the responsibility for
access control away from the server and give it to its clients.

Clients are capable of performing distributed access con-
trol but, once access has been granted, there is no way to
prevent others from copying content, any more than a tradi-
tional social network can prevent users from saving photos to
their hard disk from their web browser. This is not a prob-
lem of technical enforcement, but of social contract. Client
software could provide users with a means of watermark-
ing content to identify the source of “leaks”, but people can
usually copy what they see and repeat what they hear.

2.2.4 Messaging
Users should be able to send secure messages to each

other. Depending on social context, delivery could be in-
stantaneous or delay-tolerant, verifiable or repudiable.

2.2.5 Joint Content
One of the most interesting subjects in the debate over

online privacy is the case of joint content : content that was
created and posted by one person, possibly in response to

1For instance, it is impossible for two Facebook users who
have opted out of searchability to connect with each other.

other content, which involves another person’s name, like-
ness, opinions or comments. For instance, if a user is“tagged”
in a Facebook photograph, they have the right to remove
the tag—which recognises the stake that they hold in the
content—but tagging another user’s photo also requires the
permission of the person who posted the photo.

In a privacy-enabling social network, there will be no way
for the central server to identify and remove photographs
that a particular user appears in. This is not a technical
shortcoming, but a fundamental social limitation: one can-
not ensure that while in public, no photographs are taken
of them and later published in a newspaper or circulated
via e-mail. What a privacy-enabling social network can do,
however, is specify a convention on the association of content
with identity.

The existence of content in a data repository is meaning-
less unless there are links to the content. When managing
one’s online persona, what matters is not the existence of
embarrassing photographs, but whether or not a potential
employer sees the photographs when searching for“Jonathan
Anderson”. Our system cannot overcome the fundamental
social limitation inherent in the former, but it can stipulate
that “well-behaved” clients ought to ignore links and tags
about a person that have not been published or otherwise
approved by their subject. By way of analogy, one cannot
stop others from spreading slanderous rumours by word of
mouth, but one can be sure their their web site, publications,
etc. do not reference them or otherwise give them credence.

3. ARCHITECTURE
We propose a client-server social networking architecture

in which the server is untrusted, providing only availability,
and clients are responsible for their own confidentiality and
integrity. Similar topologies have been applied to network
file systems in the past [10].

In this architecture, the server is both untrusted and sim-
ple to operate. Because it is untrusted, there is no need
for the client software to be written by the storage provider;
multiple independent vendors could produce competing client
software, as long as they follow the same specifications. Be-
cause it is simple, it would require little computational power
or maintenance; it could, in fact, merely be an interface to
a content delivery network.

The clients in this architecture will be composed of several
software layers. These are, from top to bottom, the applica-
tion layer, the data structures layer, the cryptographic layer
and the network layer.

3.1 Application Layer
Applications will run inside a secure sandbox that will

limit their access to user data and communication channels.
This is, in computing terms, a very old concept [11], yet it
is a dramatic improvement beyond current platforms, whose
applications run on third-party servers and can often store
and share private information freely [14].

Within its sandbox, an application will be prevented from
accessing user information or other applications unless that
access is mediated by the user’s client. The client will expose
an API which will be governed by a security policy, which
should be restrictive by default yet unobtrusive, built using
techniques such as “security by designation” [22].

Just as a system call API can include a (relatively) small
number of fundamental, atomic operations, so should our

application API provide basic social functions that user-
created applications can combine in new and interesting
ways. Designing security APIs is a difficult problem [1] but,
if done well, combinations of atomic operations will not af-
fect our reasoning about privacy and security.

3.2 Data Structures Layer
In order to prevent other users from learning how much

content a user has posted (and thus discovering how much
content is hidden from them), it is essential that user content
exist as a collection of discrete blocks, whose linkages are
known only to those who are authorised to read them.

These blocks will contain user content and links to other
blocks. Links need to be hidden in order to satisfy the re-
quirement that other users must not be able to see how much
information they do not have access to. Such hiding is ac-
complished by cryptographic means which are described in
Section 3.3.

As each block is decrypted and its links discerned, a tree
of blocks and their links can be compiled. Walking this tree
provides the client with all content that it is able to access
about a particular user; the root node of the tree can thus
be viewed as the interface to all of the user’s content2.

3.3 Cryptography Layer
The cryptographic layer of the client software provides

both confidentiality, protecting content from those not au-
thorised to view it, and integrity, verifying that other users’
content is genuine. Specific tasks that it must perform in-
clude managing keys, verifying identity, encrypting private
information and signing content.

3.3.1 Identity Verification
Our access control system assumes shared public keys be-

tween pairs of users who are sharing content. There are
several ways in which cryptography can be used to support
binding online identities to real-world ones.

One rigorous but tedious approach is for users to exchange
the entire hex string of their public keys in a face-to-face
meeting. The identity verification itself is thus performed in
the traditional, social way, but we do not expect exchanging
large base-64 numbers to be a popular activity.

A more realistic approach could involve the distribution of
cryptoIDs [15], which are public key fingerprints of a man-
ageable size3. After the exchange, users would enter each
others’ CryptoIDs into their client software, which would
look up, retrieve and verify their full public keys. Again,
real-world identities are verified in the traditional way, but
a CryptoID fingerprint is small enough to exchange via busi-
ness card or even the back of a napkin.

If users initially connect via an untrusted channel, e.g. e-
mail, website, IM or the network itself, verification can be
done through a simple multi-channel protocol. Assuming
that we have at our disposal a low-capacity bidirectional
authentic channel (a face-to-face meeting, talking over the
telephone, etc.), we can use the multi-channel authentication

2Multi-faceted identity is also possible: trees can be con-
structed with different branches (or even different roots)
presented to different peers.
3For instance, the CryptoID f3v4g.ifcen.r3rj5.embx8 is
“a little longer than most email addresses, a little shorter
than most postal addresses, and about the same size as a
credit card number plus its 4-digit expiration date.” [15]

Algorithm 1 Mutual Authentication Protocol

A −→ B : KA

B −→ A : KB

A −→ B : H (A | KA | KB | Ra | Ka)

B −→ A : H (B | KA | KB | Rb | Kb)

A
offline−→ B : Ra

B
offline−→ A : Rb

A −→ B : Ka

B −→ A : Kb

A
offline−→ B : outcome

B
offline−→ A : outcome

protocol of Wong and Stajano [21] shown in Algorithm 1.
In this protocol, A and B are the identities of Alice and

Bob (which could be a cryptoID, UUID, e-mail address, etc.)
and KA and KB are their public keys. Ra and Rb are short
random nonces that Alice and Bob generate, while Ka and
Kb are long random nonces.

The security of this system does not rely on the length of
the short nonces, or even on their secrecy; rather, it depends
on data origin authenticity—Bob knows that Alice really
was the person who provided him with Ra, and vice versa.
Even if an attacker Eve can replace messages 3 and 4 with
hashes of chosen public keys and long nonces, she cannot
choose Ra or Rb and is unlikely to guess them. This is true
even if these nonces are very short—a 4-digit PIN would be
perfectly acceptable to prevent this attack.

Finally, users and their client software might opt in some
situations to depend on “traditional” online identity verifi-
cation mechanisms such third-party certification or a Web
of Trust. Such mechanisms do not offer the same level of as-
surance as meeting with a friend face to face, but they may
be appropriate for some social or business relationships.

3.3.2 Link Hiding
Link hiding can be accomplished very simply via stream

cipher encryption. Every block of user information should
end with padding that is indistinguishable from random:

03 00 4d 0b 59 7a e5 b0 7a bf 89 c8 f6 b0 2d
74 76 2d 30 64 67 9a 42 f6 34 15 bc 66 71 91
2a 34 0e e6 45 c4 ff 8f d7 90 95 4a e3 a8 2e

Different portions of this padding may, however, be con-
structed from different stream cipher keystreams. Thus,
when one user attempts to decrypt it, she will see the result:

1e fb L I N K : a b c 92 71 44
99 1c ff bf d9 5a e1 03 08 8e 7d 9b c2 45 56
aa dd 0e 64 fc 7f a3 c4 77 77 e6 a0 81 c4 5a

Whereas another user, following the same procedure but
using a different key, will see:

ad e6 e1 69 fd 4e 70 3c da ce f8 c6 94 0f e7
3c 6b 66 c5 39 6c 1c 74 c1 14 ef 53 L I N
K : d e f 70 32 22 12 37 9d 92 e4

These links can be hidden in random locations within the
padding so that clients cannot determine how many links
exist within the padding and are hidden from them.

3.3.3 Key Management
The most straightforward system of key management would

be to simply encrypt all content multiple times, once per au-
thorised user. Encrypting every block of information to the
public key or shared key of every recipient, however, would
be a very heavy computational burden.

A more practical scheme is to encrypt blocks under a
symmetric key which can be easily changed every time the
block’s access control list changes. This symmetric key could
then be made available to other users via a hierarchical
scheme involving shared group keys. This is a space-time
trade-off: more blocks of information must be created, but
the cost of these extra blocks (a small amount of extra stor-
age and network transfer) will sometimes be less than that
of performing many cryptographic operations (higher oper-
ation latency).

Like the hidden links described in Section 3.3.2, the en-
cryption of Kgroup should be done in such a way that one
user of the group cannot determine how many other users
there are, using random locations within a header whose
content is indistinguishable from random.

3.3.4 Joint Content
There are several different schemes to enable users to

jointly post content, depending on the underlying security
model desired. A publicy-postable “wall”’ feature can be im-
plemented by linking to a block which stores the contents
of the wall and providing some others with the capability to
update that block. Tags or comments that require approval
will take the form of a message which includes the joint con-
tent itself and a hash of its context (the original content,
previous comments, etc.), signed by the creators of both the
original and the joint content. This gives the owner of the
original content the ability to endorse joint content and the
creator of the joint content the ability to specify the context
that their content should not be taken out of.

3.3.5 Messaging
Delay-tolerant messaging à la e-mail or Facebook mes-

saging is relatively straightforward: the sender’s client need
only create a portion of their profile which only the recipient
can see, and embed the message within it. The only ques-
tion that arises is, should the message be digitally signed
or not? Digital signatures are useful for providing assur-
ance to the recipient that a message is genuine, but in some
situations, anonymity and plausible deniability are more im-
portant. Helping users make this decision is an important
usability question for the future.

For instant messaging functionality, we could set up a
peer-to-peer IM session between clients protected by a well-
known protocol such as Off-The-Record messaging [2, 18].

3.4 Network Layer
The interactions between client and server are very simple:

clients store blocks of content on the server, which makes
them available for other clients to access. The access control
on the server is very limited: it need only prevent overwrites.
The API between client and server, therefore, could consist
of just two commands:

• x = GET(ID)

• C = POST(ID, x, C)

The GET command retrieves a block from the server. No
read access control is performed at the server: all blocks are
publicly readable, but they will usually be encrypted.

The POST command lets users post a block of content
x having the unique identifier ID. The response to this
command is a capability C which allows the block to be
overwritten in the future. Without holding such a capability,
a client can only post to an as-yet unused UUID.

These simple functions are all that is required of the net-
work layer, but the addition of other commands could aid
performance without compromising privacy. For example,
delay-tolerant messaging via profile blocks could be made
more efficient if the server provided a limited signalling chan-
nel to each user which signified “user X has sent you a mes-
sage; you may wish to check for updates in their profile”.

4. IMPLEMENTATION
We have implemented some4 of the functionality of this

system as a Java application which, without requiring lo-
cal installation, behaves like a familiar web interface. This
application, which runs via Java Web Start, acts as a Web
server, serving HTML, JavaScript and Ajax content to the
user’s browser.

The Java Virtual Machine (JVM) provides us with a nearly-
ubiquitous platform on which to write client software, whether
using the application-as-web-server model, a traditional desk-
top environment or a JavaME on a mobile platform.

Java’s security policy architecture also allows the JVM to
run different pieces of code with different levels of permission
[7]. Applications are thus run as plugin components with
no permission to perform system operations such as open
network sockets or draw graphics on the screen5. All such
interactions must go through our application API, where
privacy and security policies can be enforced.

5. PERFORMANCE
The proposed architecture should scale more easily than

existing social networks, since the central server’s storage
requirement is no larger, but the computational demands
placed on it are far smaller.

Clients will perform more computation than they do in
current networks, but this work only scales as a factor of
the number of users a particular client interacts with, not
the number of clients in the entire system.

To consider the speed of the system, let us assume that a
user, Alice, has d friends whose profiles she wishes to view,
and each of those profile has n blocks of equal size arranged
in a tree with a branching factor of b. We will assume that
Alice has the right to see all dn blocks, but that they are
encrypted so that she must decrypt a block before she can
retrieve its children.

4We have prepared a proof of concept implementation of
the technologies which we believe required demonstration:
a custom classloader running in Java Web Start which can
load plugins with limited permissions, a local Web server
which communicates with browser-side Ajax and crypto-
graphic code for performance testing.
5Unfortunately, Java’s security policy does not allow us to
restrict access to the current system time; if it did, we could
even shut down covert channels of information flow among
malicious applications [11]. Still, changing the flow of pri-
vate information from unrestricted to covert-channel-only is
a very significant improvement.

We define tb to be the time required to download a block
from the server, tpk to be the time required to perform
public-key decryption and tsk to be the time required to
perform symmetric-key encryption or decryption. We as-
sume that Alice can perform cryptographic operations in
parallel with network operations, as long as the required in-
formation has all been downloaded. We also assume that
Alice has no cache of any of her friends’ information blocks,
so she must download them all, starting with the d blocks
which comprise the roots of the profile trees.

As Alice downloads the roots of her friends’ profiles, she
must decrypt them. The first decryption will be a public-
key operation to retrieve symmetric keys which have been
granted to Alice. These operations require time tpk , and
the first such operation will begin once the first block has
been downloaded at time tb.

At time tb + tpk, then, Alice will have downloaded and de-
crypted one friend’s root node, which will point her towards
another b blocks. Sets of b blocks will continue to be added
to the download queue as each root block is decrypted, and
all d root blocks be downloaded and decrypted at time td:

td =

(
dtb + tpk tpk ≤ tb
tb + dtpk tpk > tb

Using standard Java cryptography libraries (SunJCE v1.7)
on a desktop PC (Intel Core2 Quad CPU Q6600 @ 2.4 GHz),
we were able to perform 2048b RSA encryption at 200 kB/s
and 1024b encryption at over 600 kB/s. Decryption pro-
gressed at ≈30 kB/s with a 1024b key and 7 kB/s with a
2048b key, so it is likely that tpk ≥ tb.

As long as tpk < dtb, however, the network I/O queue
will not empty, as the first root block which is decrypted
will yield URLs for b non-root blocks to download, and each
of these blocks will yield b more. Almost all of these blocks
will be encrypted with a symmetric key, and symmetric key
performance is much better than public-key: using the above
computer installation, we were able to encrypt over 35 MB
of data per second using 128b AES, which is almost instan-
taneous when compared to typical download rates on con-
sumer equipment.

Thus, as long as tpk < dtb, the task of retrieving the
profiles of a user’s friends will be I/O-bound, even in the
worst case where no symmetric keys have been cached. If
some keys are cached, even this requirement of tpk < dtb
will be relaxed.

6. RELATED WORK
Distributed social networks have been proposed by Bucheg-

ger and Datta with a view to develop distributed access con-
trol in the future [3, 4].

Guha et al have proposed a privacy scheme for social net-
works in which Facebook users host the profile information
of others, and a particular user’s profile can be reconsti-
tuted from their friends via a keyed function [8]. Lucas and
Borisov proposed simply encrypting user information [12],
but neither of these schemes addressed the problem of pro-
tecting the links between users.

Felt and Evans suggested privacy-by-proxy, which lim-
its applications’ initial access to personal information [6],
though it doesn’t enforce policies about application behaviour
once the application has a user’s personal information.

The SUNDR network file system created by Li et al [10]
is an example of a client-server architecture in which clients
use cryptography to share a general-purpose filesystem on
an untrusted server. This system uses cryptography heavily,
yet its performance is comparable to established network file
systems.

7. CONCLUSION
We have proposed an architecture for privacy-enabling

social networking which would satisfy users’ requirements
for existing functionality, as well as provide a platform on
which sandboxed applications could be written to provide
unforeseen functionality in a privacy-enabling way. The ar-
chitecture is based on simple client-server interactions which
transfer encrypted blocks, blocks which when decrypted can
be used to reconstitute all of the content that another user
has shared with the client.

The architecture provides means to protect private infor-
mation against discovery and disclosure, not just by other
users, but by the network operator. Social graph informa-
tion is also protected against discovery by other users, but
it is impossible to prevent a centralised server from perform-
ing traffic analysis; further work should include protection
against traffic analysis through decentralisation.

Acknowledgements
This work was partially supported by the Rothermere Foun-
dation, the Gates Cambridge Trust, the IWT SBO ADAPID
project, the Concerted Research Action (GOA) Ambior-
ics 2005/11 of the Flemish Government and the IAP Pro-
gramme P6/26 BCRYPT.

8. REFERENCES
[1] Bond, M. Understanding Security APIs. PhD thesis,

University of Cambridge, Jan 2004.
[2] Borisov, N., Goldberg, I., and Brewer, E.

Off-the-Record Communication, or, Why Not To Use
PGP. In Proceedings of the 2004 ACM Workshop on
Privacy in the Electronic Society (2004), pp. 77 – 84.

[3] Buchegger, S., and Datta, A. A Case for P2P
Infrastructure for Social Networks - Opportunities &
Challenges. In Proceedings of the Sixth International
Conference on Wireless On-demand Network Systems
and Services (2009).

[4] Buchegger, S., Schioberg, D., Vu, L.-H., and
Datta, A. PeerSoN: P2P Social Networking — Early
Experiences and Insights. In Proceedings of the Second
Annual EuroSys Workshop on Social Network Systems
(Mar 2009).

[5] danah michele boyd. Taken Out of Context –
American Teen Sociality in Networked Publics. PhD
thesis, University of California, Berkeley, 2008.

[6] Felt, A., and Evans, D. Privacy Protection for
Social Networking Platforms. In Proceedings of Web
2.0 Security and Privacy 2008 (2008).

[7] Gong, L., Mueller, M., Prafullchandra, H.,
and Schemers, R. Going Beyond the Sandbox: An
Overview of the New Security Architecture in the Java
Development Kit 1.2. In Proceedings of the USENIX
Symposium on Internet Technologies and Systems
(1997).

[8] Guha, S., Tang, K., and Francis, P. NOYB:
Privacy in Online Social Networks. In Proceedings of
the First Workshop on Online Social Networks (Aug
2008), pp. 49 – 54.

[9] Jagatic, T., Johnson, N., Jakobsson, M., and
Menczer, F. Social Phishing. Communications of the
ACM 50, 10 (Oct 2007), 94 – 100.

[10] Li, J., Krohn, M., Mazieres, D., and Shasha, D.
Secure untrusted data repository (SUNDR). the 6th
Symposium on Operating Systems Design and
Implementation (2004).

[11] Lipner, S. B. A Comment on the Confinement
Problem. ACM SIGOPS Operating Systems Review 9,
5 (1975), 192 – 196.

[12] Lucas, M., and Borisov, N. FlyByNight:
Mitigating the Privacy Risks of Social Networking. the
7th ACM Workshop on Privacy in the Electronic
Society (Oct 2008).

[13] McGonigle, B. Some profiles on MySpace.com not
what they seem. http://www.boston.com/news/
nation/washington/articles/2006/10/16/some_
profiles_on_myspacecom_not_what_they_seem/,
October 2006. The Boston Globe.

[14] Mills, E. Facebook suspends app that permitted
peephole. http:
//news.cnet.com/8301-10784_3-9977762-7.html,
Jun 2008. CNET News.

[15] Perrin, T. Public key distribution through
”cryptoIDs”. In Proceedings of the 2003 Workshop on
New Security Paradigms (Aug 2003), pp. 87 – 102.

[16] Pilkington, E. Blackmail claim stirs fears over
Facebook. http://www.guardian.co.uk/business/
2007/jul/16/usnews.news, Jul 2007. The Guardian.

[17] Rabkin, A. Personal knowledge questions for fallback
authentication: Security questions in the era of
Facebook. In Proceedings of Symposium on Usable
Privacy and Security (2008), pp. 13 – 23.

[18] Raimondo, M., Gennaro, R., and Krawczyk, H.
Secure Off-the-Record Messaging. the 2005 ACM
Workshop on Privacy in the Electronic Society (Nov
2005), 81 – 89.

[19] Randall, D., and Richards, V. Facebook can ruin
your life. And so can MySpace, Bebo... http://www.
independent.co.uk/life-style/gadgets-and-tech/
news/facebook-can-ruin-your-life-and-so-can\
-myspace-bebo-780521.html, February 2008. The
Independent.

[20] Story, L., and Stone, B. Facebook Retreats on
Online Tracking. http://www.nytimes.com/2007/11/
30/technology/30face.html, Nov 2007. The New
York Times.

[21] Wong, F.-L., and Stajano, F. Multi-channel
Protocols. In Proceedings of the International
Workshop on Security Protocols (2005), pp. 112 – 127.

[22] Yee, K.-P. Aligning security and usability. IEEE
Security and Privacy Magazine 2, 5 (2004), 48 – 55.

