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Abstract. We implement and demonstrate a passive attack on the Blue-
tooth authentication protocol used to connect two devices to each other.
Using a protocol analyzer and a brute-force attack on the PIN, we re-
cover the link key shared by two devices. With this secret we can then
decrypt any encrypted traffic between the devices as well as, potentially,
impersonate the devices to each other. We then implement an alternative
pairing protocol that is more robust against passive attacks and against
active man-in-the-middle attacks. The price of the added security offered
by the new protocol is its use of asymmetric cryptography, traditionally
considered infeasible on handheld devices. We show that an implemen-
tation based on elliptic curves is well within the possibility of a modern
handphone and has negligible effects on speed and user experience.

1 Introduction

Bluetooth is an open specification for seamless wireless short-range communi-
cations of data and voice between devices. It provides a way to connect and
exchange information between wireless-enabled devices such as mobile phones,
personal digital assistants (PDAs), laptops, desktops, printers, digital cameras
and other peripherals. The specification was first developed by Ericsson, and
later formalized by the Bluetooth Special Interest Group.

The Bluetooth authentication protocol is based on symmetric key cryptography
and on a (typically numeric and short) password, called PIN, that the user enters
into both devices. As first pointed out by Jakobsson and Wetzel [13], the protocol
is vulnerable to a passive attack in which the eavesdropper brute-forces the PIN
space and silently checks which PIN correctly reproduces the observed message
trace.

We implemented this attack and successfully carried it out against several pairs
of commercially available Bluetooth devices. Before proceeding any further, let
us first review the original Bluetooth authentication and pairing protocol.

1.1 Bluetooth authentication

Bluetooth natively provides authentication and encryption. Authentication is
provided by a 128-bit link key, which is a shared secret known to a pair of
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Bluetooth devices which have previously formed a pair. The algorithms for au-
thentication and for the generation of link and encryption keys are all based
on SAFER+ [22], here used basically as a hash. The cipher algorithm is E0—a
stream cipher whose key can be up to 128 bits long.

The security architecture of Bluetooth defines three possible security modes for
a device [5,4]. Mode 1 is non-secure, Mode 2 enforces security at the fine-grained
service level and Mode 3 enforces security at the link level.

In the case of Modes 2 and 3, if pairing is turned on, when two Bluetooth devices
meet for the first time, they pair using the following key:

Kinit = E22{PIN, BD ADDRA, RANDB}

where BD ADDRA is the device address of device A, RANDB is a random
number contributed by device B and PIN is a shared password that the user
must generate and then manually enter into both devices. (Clearly, BD ADDRA

and RANDB will be available to an eavesdropper, while PIN won’t.)

Once two devices share a link key, the following protocol allows them to renew
it and derive a new one, known as a combination key1, which becomes the new
link key used from that point onwards.

The devices each produces a random number (LK RANDA or LK RANDB),
masks it by XORing it with Kinit and sends it to the other party. Both parties
individually hash each of the two random numbers with the Bluetooth address
of the device that generated it, using the algorithm E21. The two hashes are
then XORed to generate the combination key:

KAB = E21(LK RANDA, BD ADDRA)

⊕ E21(LK RANDB, BD ADDRB).

The combination link keys calculated by each device after the key agreement
should of course be the same if the procedure is successful. The old link key
(either Kinit or a previous KAB) is then discarded.

Another, less secure kind of link key is the unit key Kunit, used by devices
that don’t have the memory to store a link key for each pairing. The restricted
memory device will negotiate to use its unit key as the pairwise link key. It will
then mask the unit key by XORing it to the Kinit formed earlier and send it
over to the other device.

For authentication, a challenge-response scheme is used. Device A sends B a
challenge RANDA, from which Device B must produce the authentication token
SRES and transmit it to A, based on the following:

1 Both the initialization key Kinit and the combination key are particular types of
link key.
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{SRES, ACO} = E1{K, RANDA, BD ADDRB}

The challenge-response is run bilaterally. If encryption is needed, the encryption
key is derived from the link key.

2 Breaking Bluetooth

2.1 Guessing the PIN

We used a Bluetooth protocol analyzer [24] to obtain a trace of Bluetooth trans-
mission from the air and to decode the packets. We captured traces of transmis-
sions from commercial Bluetooth devices such as handphones, PDAs, laptops,
etc. The packets bearing the required pairing, key formation and authentication
processes were analyzed.

We wrote a program that parsed the captured traces and extracted the relevant
parameters as they appeared in the transmissions. The trace contains the device
addresses, the random numbers exchanged, the challenge and response tokens
and all other relevant parameters of one protocol run. Using these, we carried out
a kind of dictionary attack (trying first the “easy” PINs such as those made of
repeated or sequential digits) and then, where necessary, a full brute force search
of the small PIN space2. For each PIN we first computed the Kinit. Then, using
the observed intermediate parameters, we computed the combination key and
authentication token SRES. Both the key agreement using the combination key
and the key transport using the unit key can be successfully attacked. If the
trace showed that a unit key had been used instead, the number of intermediate
parameters is even fewer. Guessing a PIN results in a SRES value identical to
the one observed in the trace. The reverse inference holds with high probability.

2.2 Quantitative observations

The attack program was just a prototype and had not been optimised. Running it
on a 1.2 GHz Pentium III laptop gave the following timing results (for randomly
chosen PINs, of course—the ones subject to pseudo-dictionary attack could be
cracked instantaneously). Note that cracking combination keys require more calls
to E21 compared to cracking unit keys. Even with our non-optimised program,
4-digit PINs can be broken instantaneously, 6-digit PINs take less than a minute
and 8-digit PINs can be cracked in less than an hour (Figure 1). This is due to
the very small size of the PIN space.

2 The user interfaces of many Bluetooth devices further restrict the set of characters
that may be used in the PIN. For handphones, this set is often just 0 to 9.
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Type of key No. of digits Time taken

Unit key 4 0.15 s
6 15 s
8 25 mins

Combination key 4 0.27 s
6 25 s
8 42 mins

Fig. 1. Time to Crack PIN

We have found the unit key used in some models of Bluetooth-equipped PDAs.
As will be clear to anyone who knows knows how how the unit key is used, as
mentioned in [13] and elsewhere, once the unit key is discovered, the attacker
can thereafter freely impersonate the device in its interactions with any other
device. Fortunately, we found that at least the unit key was not set to the same
string from device to device. The unit key is deprecated from version 1.2 onwards
of the Bluetooth specification [6].

The only practical obstacle to widespread replication of the attack described
here is that not every would-be eavesdropper will have easy access to a Blue-
tooth protocol analyzer (≈ 3000 GBP). We expect however that enterprising
hackers could in time figure out ways to use cheap standard Bluetooth modules
to access the baseband layer directly, without requiring expensive debugging and
diagnostic tools.

2.3 Improved Key Management — Frequent Change of Link Key

Although the protocol is broken by an attacker who eavesdrops on the key es-
tablishment phase, within its constraints of avoiding public key cryptography
it is not an overly weak design. If the attacker misses the initial key establish-
ment, this attack stops working. Moreover, as discussed in Part C, Section 3.4
of Version 1.1 [5] and Vol 2, Section 4.2.3 of Version 1.2 [6] of the specification,
Bluetooth already supports renewal of the link key. An attacker who knows the
previous link key and eavesdrops on the link key renewal exchange can trivially
discover the new key, but if he misses that exchange then the two devices are
safe from further eavesdropping, unless they recourse to bootstrapping a new
link key from the weak PIN. This is a good security feature but unfortunately it
is rarely exploited in current commercial Bluetooth devices. Change of link key
is cheap for the user because it does not involve typing a PIN; yet most devices
do not offer the option. We propose that devices provide users with the ability
to initiate link key change whenever they wish and we further recommend that
users exercise this option often. Frequent change of link key forces an attacker to
be continually present when the two target devices are communicating. For re-
sistance against an attacker who could be continually present when the link key
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is changed, then there is a compelling case to re-key via asymmetric techniques,
which is not yet supported in the current specification. Frequent change of link
key would also mitigate the risks of Barkan-Biham-Keller-style encryption key
replay attacks raised by Ritvanen and Nyberg [27]. Fixes to the Bluetooth cipher
algorithm and encryption key derivation are however, beyond the scope of this
paper.

After we presented this paper at the workshop, another paper [29] appeared,
which performed a similar attack to the one described in Sections 2.1 and 2.2.
The computation speed of their attack seemed to be of the same order as ours.
An interesting angle in that paper is that the authors attempt to force pairing
and repeated pairing instead of passively waiting for one.

2.4 Further comments

Our experiment confirms the expected result that short Bluetooth PINs can be
cracked by brute force search with modest computational resources. It is not
practical to seek protection in significantly longer PINs. As a rule of thumb,
humans on average can reliably remember PINs up to only 7 digits in length,
plus or minus 2 [23]. Software optimization and hardware implementations will
bring further improvements in attack speed. Computing hardware continues to
improve in performance, but the capacity of the human memory does not improve
significantly over generations.

One may also observe, although this will have very little practical impact, that
even a Bluetooth PIN of the maximal length (16 octets) allowed by the specifi-
cation will not support the full diversity of 128 bits at the baseband. The PIN is
represented at the user interface level by UTF-8 coding—a variable-length char-
acter encoding scheme which uses groups of bytes to represent Unicode. This
means it is not possible to use the whole theoretical 128 bit PIN space even if
the user interface could support it.

The short range of Bluetooth provides some protection against eavesdropping
attacks, but an attacker can circumvent this with a high-gain antenna which
extends the reach well beyond the Bluetooth nominal range.

A PIN-cracking attack of the kind described in this section could lead, among
other threats, to an attacker recording the cleartext of the encrypted commu-
nications between your handphone and headset or between your PDA and the
desktop machine with which it synchronizes. As a more elaborate follow-up, an
active attacker might even be able to impersonate your desktop computer to
your PDA and upload maliciously altered data into it, such as an address book
with edited phone numbers.
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3 Strengthening Bluetooth

After having ascertained the practical vulnerability of the Bluetooth pairing
protocol, we did our best to repair it. Our first goal was to establish a strong,
eavesdropper-resistant shared key between the two paired devices. We found no
way of doing this within the thrifty constraints chosen by the Bluetooth design-
ers, so we ended up having to resort to asymmetric cryptography, in particular
to the Diffie-Hellman key agreement. We then sought to make this exchange re-
sistant against active man-in-the-middle attacks. For this we turned to the vast
literature on Encrypted Key Exchange [2] and derivatives.

Next, in order to mitigate the overall cost of the algorithm, we implemented the
asymmetric cryptography operations using elliptic curves. Finally, to validate
the feasibility of the approach, we implemented a single-machine simulation of
the whole algorithm (with a single thread performing all the calculations that
the two parties would in turn perform during a run of the protocol) and we
ported it to a Bluetooth handphone. At the current stage of implementation we
are not performing the protocol over radio, because the API of the phone does
not allow us to modify the Bluetooth stack, but we are demonstrating that the
processor in a modern handphone can perform the protocol with no appreciable
penalty in terms of time or energy.

3.1 Password-Based Key Agreement

In the Bluetooth protocol, the eavesdropper may brute-force the PIN offline
and learn the session key as we did. To improve on that, we use a variant of
Encrypted Key Exchange (EKE). Regardless of the actual PIN, the eavesdropper
cannot discover the session key, since it is established via Diffie-Hellman. The
PIN instead is used to defeat active middleperson attacks and it cannot be
brute-forced because the middleperson is detected at the first wrong guess.

EKE was introduced in 1992 by Bellovin and Meritt [2]. Thereafter, there have
been a number of suggestions for password based authenticated key-exchange
protocols. These include the schemes described in [11,12,32,7,15]. Some EKE
variants add security features such as forward secrecy. Other different approaches
include [10], which depend on parties knowing the others’ public keys beforehand,
[1], which uses collisionful hashes, and [28], which use ‘confounders’ but neither
hashes nor symmetric cryptography.

We presented a protocol at the workshop, which was later discovered to be vul-
nerable to an active guessing attack when an attacker participates in a protocol
run. Details of the protocol and the attack are given in Appendix A.

We thus revise our solution and provide one which is based on the AMP suite
developed by Kwon [14,15,16], in particular AMP+. The password is entangled
in such a way that an attacker who has no knowledge of the password is not able
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to mount such an active guessing attack, and also at the same time not able to
compute the shared key formed between two genuine participating parties. The
other advantages of this scheme include the following: its relative good efficiency,
its simple and understandable structure, it can be easily generalised, ie. to elliptic
curve (EC) groups, and a formal security proof is provided.

3.2 Proposed Protocol Implementation

Elliptic Curve Diffie-Hellman - Encrypted Key Exchange (AMP+)
The protocol may be sketched as follows. The participants share a weak pass-
word P . They hash the password with the parties’ identifiers (ie. their device
addresses) to produce the password hash s, which is then multiplied with G, the
common base point of the elliptic curve, to produce V . Alice sends her ephemeral
public key G.rA

3. Both Bob and Alice hash their identifiers with Alice’s public
key to obtain e1. Bob multiplies Alice’s public key by e1, adds it to V , and mul-
tiplies this with Bob’s private key rB . This result is Bob’s password-entangled
public key, QB. Bob sends QB to Alice. Both parties would hash both of their
identifiers and both parties’ public keys together to obtain e2. Alice computes
ω, using her secret key rA, the password hash s, and the values of e1 and e2

computed earlier. After obtaining ω, and using Bob’s password-entangled public
key QB, Alice is able to calculate (rA +e2).rB .G and derive the shared key. Over
at Bob’s end, he knows rB, and using Alice’s public key QA and the value of e2

he has computed, Bob would likewise be able to calculate (rA + e2).rB .G and
derive the shared key. The resulting protocol is shown in Figure 2.

The security of the AMP family as secure authenticated key exchange protocols
has been asserted by a formal proof [14] (with the caveats of proofs in this field).

By inspecting the structure of the protocol, it can be seen that a passive eaves-
dropper would not able to compute the shared session key, unless he knows either
rA or rB . This is the Diffie-Hellman number-theoretic problem considered hard.
An active adversary, Eve, may attempt to carry out a protocol run (either full
or partial) so as to obtain a trace to conduct a password guess (either online or
offline). She does not have a high chance of success. If Eve attempts to masquer-
ade as Alice, she has one chance at correctly guessing the password hash s, so
as to calculate the correct K and subsequently send the correct M1 to Bob. If
she fails at one try, Bob will abort the protocol run without revealing more than
one wrong guess. If Eve attempts to masquerade as Bob, and she contributes a
password-entangled public key while not knowing the password hash s, even if
she manages to collect an M1 sent by Alice, Eve would need to solve the Diffie-
Hellman problem to recover the corresponding rB that would produce the same
K solution which Alice has calculated.

3 Analogous to the case of multiplicative groups in finite fields, where rA and grA

would be the private and public keys respectively, likewise for the EC case, given rA

finding G.rA is easy, while given G.rA finding rA is hard.
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# Alice Bob

s = H0(IA, IB, P ) s = H0(IA, IB, P )
V = G.s V = G.s

Chooses random rA

QA = G.rA

1
QA
−→

e1 = H1(IA, IB, QA) e1 = H1(IA, IB , QA)
Chooses random rB

QB = (QA.e1 + V ).rB

2
QB
←−

e2 = H2(IA, IB , QA, QB) e2 = H2(IA, IB, QA, QB)
ω = (rAe1 + s)−1(rA + e2)

K = H3(h.QB .ω) K′ = H3(h.(QA + G.e2).rB)
M1 = H4(IA, IB , QA, QB, K)

3
M1
−→

M ′

1 = H4(IA, IB , QA, QB, K′)
Verifies M1 = M ′

1

M2 = H5(IA, IB , QA, QB, K′)

4
M2
←−

M ′

2 = H5(IA, IB , QA, QB, K)
Verifies M2 = M ′

2

Fig. 2. Password-based Key Agreement (based on AMP+)

Perfect forward secrecy in the protocol is provided through Diffie-Hellman, so
an adversary is not able to calculate past session keys after knowing P or s.
By the same token, there is also resistance to the Denning-Sacco or known-key
attack, in which an adversary may attempt to attack the password after knowing
a previous session key.

The protocol resists the two-for-one guessing attack [20] by an adversary which
masquerades as Bob. The idea behind this attack is that an attacker can validate
two password guesses on one connection attempt. Earlier versions of AMP and
SRP [32] were vulnerable to this slight deficiency. The improved AMP version
resists this by doing a EC multiply (or exponentiation in discrete logarithm
notation) of QA by e1 to obtain QB, which breaks the symmetry which would
otherwise exist between QA and V . Many-to-many guessing attacks, first raised
by Kwon [16], particularly affect three-pass protocols. We do not think that
many-to-many guessing attacks are too risky for ad-hoc devices though, since it
is not expected at present that the devices would participate in more than a single
password-based key agreement run at any one time. We however choose to use a
four-pass protocol, and not a three-pass one, even if the latter is more efficient,
in case of future feature creep where ad-hoc devices become more powerful and
get called upon to behave more like server-type machines supporting multiple
connection instances.
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Key Derivation The co-factor h is used to provide resistance to attacks like
small subgroup attacks.

K = H3(h.(rA + e2).rB .G)

Further, as recommended by IEEE 1363 Standard Specifications for Public Key
Cryptography [25], a key derivation function is used because the output from an
elliptic curve secret value derivation step may not always be appropriate to use
directly as a session key, due to possible bias in some of its bits. A key derivation
function based on some hash function will be able to utilize more effectively the
entire entropy of the secret value. The hash also helps resist a known-key attack.

Key Confirmation The key confirmation procedure is necessary to prove that
the other party knew the password S and has established the same shared key K.
It is bilateral. Including the identifiers of both parties adds explicitness and more
defence-in-depth. The key confirmation functions H4 and H5 are hash functions.
They may be differentiated by having different short strings pre-concatenated
with their other hash inputs.

For subsequent mutual authentication between the pair of devices after they have
established and confirmed the shared key, they may use the bilateral challenge-
response steps similar to what is in Bluetooth’s pre-existing specification. We use
challenge-response with random nonces then instead of running the earlier key
confirmation function again because freshness and resistance to replay attacks
would then be necessary.

3.3 Hash Check Values

It has been suggested that checking a short code over a manual transfer channel
[9] may be useful to help in key confirmation for wireless device imprinting. In
our scheme, these mechanisms can be helpful, but are not essential, since there
is already an existing manual data transfer mechanism, the out-of-band sharing
of the password, which we assume is performed confidentially, and it is later
entangled into the DH keys. The use of short hash check values would present to
an adversary the opportunity to search the whole space of 2r possibilities, where
r is the bit length of the short hash, until he finds matching pre-images with
which he would be able to carry out a certainly successful middleperson attack.
Whereas entangling the password with public keys presents to the adversary a
probability of a 1 in 2t chance to guess correctly in one try the password, where
t is the bit length of the password space, to be able to carry out a successful
middleperson attack. The lengths of the password and the check value can rea-
sonably be assumed to be of the same approximate order. Under the standard
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attacker model of a RF middleperson attacker, hash check values does not appear
to be a better alternative.

In scenarios where it is not difficult to present a user-interface which can show
check values of sufficient lengths, further using hash check values is recom-
mended, and may even be substituted for the key confirmation step described
earlier, to increase the difficulty further for the attacker, in the off-chance that
he manages to make a correct guess of the password in one pass. The price is
the increased burden for the user of a second “manual transfer” operation.

3.4 Implementation

We developed a demonstration program which implemented the entire key agree-
ment protocol run described above. A 163-bit binary curve is used for the elliptic-
curve cryptosystem. The hash function used is SHA-14. Due to the difficulties
of integrating this functionality described by the protocol into commercial Blue-
tooth devices, as changes are required at the baseband level of Bluetooth’s pro-
tocol stack, we have not proceeded to implement this in a pair of Bluetooth
demonstrator devices.

Laptop The unoptimised simulation runs over a 1.2 GHz Pentium M laptop.
Our program used routines from the MIRACL [19] library to do the elliptic
curve operations. On average, it took 3 milliseconds to perform an elliptic curve
multiply operation (the most expensive single operation). As an upper bound,
we consider that each of the computations of QB and K ′ requires 2 EC multi-
plies. The other operations take negligible time with respect to the public-key
operations. The entire protocol run is completed in the order of time taken for
6 EC multiplies, which is 18 milliseconds on our platform.

Handphone The software prototype was ported to a commercial handphone,
a Nokia 6600 with a 104 MHz ARM processor and running the Symbian oper-
ating system. The timing results proved that this phone can run the protocol
without any speed problems. An EC multiply of the said order took merely 80
milliseconds. Thus, ignoring communication delays, all the computations of the
entire protocol run may be completed in around half a second. If V can be as-
sumed to have been pre-computed, there is a saving of 80 milliseconds. Note that
these public key operations, while intensive, are only required for key agreement,
which is usually done once-off between a pair of devices. The rest of Bluetooth
traffic encryption is carried out by symmetric means.

4 This choice may be re-evaluated in the light of recent attacks [31], though the usages
of the hash functions in the protocol do not appear to require random collision
resistance [18].
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3.5 Further Work

Having established that asymmetric cryptography is affordable for a modern
handphone, there is still the problem of simpler peripherals, such as Bluetooth
headsets. It would be useful to develop an “asymmetric protocol”, in which the
more powerful device perform most of the computation. Another area that would
need attention, assuming that the old protocol would be supported alongside
the new for compatibility, is that of safeguards against the classic attack of
persuading the devices to use the old less secure protocol even when they could
both use the new one.

4 Conclusions

It was clear that the Bluetooth pairing protocol, based as it is on symmetric
cryptography and on a low entropy PIN, would always be subject to a PIN-
cracking attack. We implemented this known attack in order to verify the re-
sources it required. Results indicate that 4-digit PINs (i.e. the ones in the format
to which people are most used from their experience with bank cards, car radios
and indeed handphones) can be cracked instantaneously. Longer PINs cannot be
considered secure, since a non-optimised attack program cracks 8-digit ones in
less than an hour. Even longer PINs, and especially PINs in which the characters
were more varied than 0–9, would offer somewhat better protection; but we do
not believe they are realistic. Within the limits of the existing protocol, frequent
change of link key would make the life of the attacker harder. We propose that
manufacturers promote the use of this facility.

We have attempted to strengthen the Bluetooth pairing protocol against the
attack we could so easily mount. To do so, we have had to resort to asymmet-
ric cryptography. In theory this could be considered as exceeding the design
parameters, when taking into account the original design goals and constraints
of Bluetooth. Having validated the protocol with a prototype implementation
on actual handphone hardware, though, we now suggest that asymmetric cryp-
tography should no longer be axiomatically considered taboo for Bluetooth-class
devices. Yes, there will still be a legion of smaller Bluetooth-capable devices with
much lesser computational capabilities and energy reserves than our handphone;
but it is significant that running a public key protocol on today’s mobile phone
is much faster than running PGP version 1 or 2 was on a desktop computer of
the day, which some of us considered perfectly acceptable.

For the new generation of powerful devices (phones, PDAs, laptops) that are the
most likely custodians of digital data that is worth more protection, stronger
authentication than that offered by the original Bluetooth protocol would be
beneficial, and is now affordable.
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Appendices

A Attack on early version of protocol

The version of the protocol we presented at the workshop, later found to be
insecure, is a variant of the EKE, using Diffie Hellman key exchange over an
elliptic curve. We will describe the protocol in the more familiar notation of a
multiplicative group over a finite field here. g is the generator of the group, and
three hash functions H0, H1, and H2 are used. The shared secret password is P ,
and its hash, s = H0(P ). The co-factor, h is publicly known. At each instantia-
tion of the protocol run, Alice and Bob choose random ephemeral private values
rA and rB respectively. CA and CB are random challenge nonces. The protocol
is shown in multiplicative group form in Figure 3.

# Alice Bob

QA = gs+rB QB = gs+rA

1
QA

−→

2
QB

←−

K = H1((QB.g−s)rA.h) K′ = H1((QA.g−s)rB .h)

3
CB
←−

4
H2(IA,IB ,K,CB)

−→

Verify hash

5
CA
−→

6
H2(IB ,IA,K′,CA)

←−

Verify hash

Fig. 3. Early version of protocol

A.1 Active guessing attack

While this protocol is secure against a passive offline eavesdropping attack—
the class of attack which we had implemented against the pairing protocol in
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the existing Bluetooth specification—one of us (Clulow) later found it to be
vulnerable to an active guessing attack. An active guessing attack is one in
which the attacker does not know the password, but participates in a protocol
run with one of the legitimate parties, and uses the trace of the protocol run to
calculate the password.

# Alice Eve

1
gs+rA

−→

2
gX

←−

K = H1((g
X .g−s)rA)

3
CB

←−

4
H2(IA,IB ,K,CB)

−→

Computes Ki = (grA+s.g−si)(X−si)

for i = 1, . . . , m

Find K′ = Ki such that
H2(IA, IB, Ki, CB) = H2(IA, IB, K, CB)

5
CA
−→

6
H2(IB ,IA,K′,CA)

←−

Verify hash

Fig. 4. Active guessing attack on protocol

The vulnerability clearly exists in both the multiplicative group and EC group
formulations of the protocol. We will describe it in the former formulation. Let
Pi for i = 1, . . . , m be an enumeration of all possible passwords. We define
si = H0(Pi). Eve pretends to be Bob, chooses random X , calculates Q′

B = gX

and submits this value of Alice. Alice continues with the protocol calculating
K = (Q′

B.g−s)rA.h, and the hash H2(IA, IB, K, CB) which she sends to Eve. Eve
then calculates all possible values of Ki = (grA+s.g−si)(X−si).h for i = 1, . . . , m.
Eve is also able to calculate all possible values of H2,i = H2(IA, IB, Ki, CB). She
compares the hash of each H2,i to the hash received from Alice. For the value of
index i for which Pi = P , the hashes will be equal, allowing Eve to identify the
original password P with high probability. The basic operations which Eve has
to perform are merely exponentiations and hashings, which are computationally
tractable. The complete attack is shown in Figure 4.

Depending on the computation power of Eve and the time-out period, she may
be able to find the correct K ′ successfully, and be able to submit Message 6 in
time to fool Alice within one protocol run. Alternatively, if Eve is unable to find
K ′ before time-out, she at least has the trace of a failed protocol run to compute
K ′ offline and find P , which she can then use in a subsequent attempt.

Finding an attack which expresses the attacker’s view of the key as tractable
exponentiation functions, where the inputs are a set of dictionary words, is not
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new. What may be considered more novel in this attack against this particular
password-based protocol is that the search term si for dictionary attack is being
applied twice in the expression, ie. (grA+s.g−si)(X−si).

B ECDLP-based solution

This appendix contains further details on our elliptic curve implementation of
the protocol. A wireless ad-hoc scenario such as Bluetooth gains from having
short keys without compromising on cryptographic strength. Storage require-
ments may be minimized. The computational load on the devices should be
minimized, as should the number of messages passed. We can assume a balanced
model. In a few applications such for the LAN gateway and the LAN client, the
augmented model, similar to that described in [3],which confers resilience to key
compromise impersonation, may be useful.

Instead of basing the key agreement on the Discrete Logarithm Problem in a mul-
tiplicative group of a prime field (whether it is a traditional discrete logarithm
system or a subgroup discrete logarithm system), we may consider it advanta-
geous to base it on the Elliptic Curve Discrete Logarithm Problem (ECDLP).

The algorithms for solving the Discrete Logarithm Problem are classified into
index-calculus methods and collision search methods. The latter have exponen-
tial running time. Index-calculus methods run at subexponential time, but these
require certain arithmetic properties to be present in a group to be success-
ful. The absence of such properties has led to the lack of any known index-
calculus attack on elliptic curve discrete logarithms. The best general-purpose
algorithm to solve the ECDLP has exponential running time. The current lack of
subexponential-time algorithms to solve the ECDLP, as well as the development
of efficient implementations of elliptic curve arithmetic, are two main reasons
why ECDLP has become attractive on which to base cryptosystems.

B.1 Elliptic Curve Discrete Logarithm

In our proposal, we use a simple construction based on elliptic curves over a
binary field. Elliptic curve domain parameters over a binary field are a septuple:

T = (m, f(x), a, b, G, n, h)

The elliptic curve is specified over a field GF (q) where q is 2m for some positive
integer m. An irreducible binary polynomial f(x) of degree m specifies the rep-
resentation of GF (q). Two elliptic curve coefficients a and b, which are elements
of GF (q), define an elliptic curve E.
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E : y2 + x.y = x3 + a.x2 + b

A positive prime integer n divides this number of points on E. And G is a
base point (xG, yG) of order n on the curve. The parameter h is the co-factor.
The choice of a binary field is made because this is easier to implement in
hardware than the others. Elliptic curves over GF (2m) generally consist of two
types of parameters those associated with a Koblitz curve, and those chosen
verifiably at random. Koblitz curves allow particularly efficient implementation,
but their extra structure also aid attack to some degree. In our trade-off, we
prefer randomly chosen parameters.

Based on the recommendations in [17], we may choose an elliptic key size which
is equivalent to a symmetric key length of 86 bits (assuming no cryptanalytic
progress), or equivalent to a symmetric key length of 79 bits (assuming cryptan-
alytic effectiveness doubles every 18 months). Such a length is suggested to be
163 bits. The reduction polynomial is:

f(x) = x163 + x7 + x6 + x3 + 1

This is roughly equivalent to 1024 bit length of RSA and DH. Some suggested
domain parameters are given in [8], and they are compliant or recommended
under ANSI X9.62, ANSI X9.63, IEEE P1363, IPSec and NIST.
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