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Abstract. The physical disappearance of the computer, associated with Ubi-
comp, has led to a number of interaction challenges. Due to the lack of an inter-
face users are losing control over applications running in Ubicomp environments.
Furthermore, the limited ability for these applications to provide feedback makes
it difficult for users to understand their workings and dependencies. We inves-
tigate whether an interaction paradigm, based on the visualising location-aware
applications on a head-mounted display, is feasible and whether it has the poten-
tial to improve the user experience in the same way graphical user interfaces did
for the desktop. We show the feasibility of the idea by building an Augmented
Reality interface to a location-aware environment. Initial user trials indicate that
the user experience can be improved through in-situ visualisation.

1 Introduction

Long-term use of indoor location-aware applications, has brought to light a number
of usability problems. The disappearance of the traditional “interface” in the Ubicomp
paradigm has resulted in users not being able to control or understand such applications,
to an extent that makes them feel comfortable. This research proposes one solution to
this problem.

Our group’s research into indoor location-aware applications in the course of the
Sentient Computing Project [1] has examined how we can support office workers in
their daily interaction with computing, communication and I/O facilities by letting ap-
plications adapt to changes in location of users and things. Over the past years users
have been supported in having phone calls forwarded automatically to their current lo-
cation; having videos, notes and documents recorded along with the user’s current con-
text; being notified about events in the physical world etc. Notably, these applications
have been designed for spontaneous walk up and use.

Contrary to what you might expect the user experience relating to such applications
has remained suboptimal. For example, automatic actions often occur without users
knowing why. Sometimes expected actions are not performed by the system for no
apparent reason. What characterises such breakdowns in location-aware applications is
that they are entirely unintelligible for most users.

These problems are not accidental but at the root of context-aware computing. Bel-
lotti and Edwards [2], starting from the point of view that complex machine inferencing
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based on human context is a “difficult proposition”, recapitulate on four design princi-
ples that need to be adhered to. More specifically, they recommend that context-aware
systems inform the user of system capabilities and understandings, and provide iden-
tity/action disclosure (“Who is that, what are they doing and what have they done?),
feedback and control.

A number of other Ubicomp researchers have pointed out problems along these
lines such as Rehman et al. [3], Bellotti et al. [4], Edwards and Grinter [5], Shafer et
al. [6], Dourish [7], Dey et al. [8] and Odlyzko [9].

The more interesting part, however, is how to solve these problems. Location-aware
walk-up-and-use applications in particular offer little facilities for feedback and control
as opposed to PDA-supported location-aware applications.

In our attempt to tackle this challenge we decided to introduce visualisation into the
location-aware environment. One of the research questions we are interested in is, can
we reap benefits from visualisation in Ubicomp1 in the same way the desktop benefited
from its introduction in the form of graphical user interfaces (GUIs). Amongst the ben-
efits of desktop GUIs has been the provision of a good mental model [10], the ability
to achieve your goals through a number of predictable interaction steps, due to a small
set of standard interaction facilities; and, very importantly, it shows us the system state
at any one point in time. Each of these features seems relevant to the Ubicomp interac-
tion problem. In the following we will present a platform for building location-aware
applications that exhibit these features.

A head-mounted display (HMD) combined with Augmented Reality (AR) [11]
makes it possible to give users the illusion that visualisations are co-located with de-
vices, people and physical spaces: objects on which location-aware applications oper-
ate. We will show how location-aware applications can make use of such a facility to
convey a mental model and provide feedback, referring directly to the objects of in-
terest. Combining this with a personal interaction device, we can create a new visual
interaction paradigm which allows for control as well.

Our main result is that introducing visualisation into Ubicomp, firstly, allows users
to make a better mental model of the application, secondly, reduces the cognitive load
associated with the application and, thirdly, gives them a more empowering user expe-
rience.

2 System Description

Before we present the platform we created to build visually interactive location-aware
applications we will briefly introduce AR.

2.1 Augmented Reality

In its widest sense any system that connects the real and virtual world can be labelled
“Augmented Reality”. As such, even tangible interfaces are examples of AR. A nar-
rower definition involves a system that uses an HMD, a tracker and 3D graphics. The

1 We regard location-aware computing, or the more general context-aware computing as flavours
of Ubicomp.
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tracker continuously measures the position and orientation of the head. The system
responds to the user’s head movement by continuously shifting the virtual viewpoint
it uses to display a 3D graphics scene on the see-through HMD. This makes the vir-
tual scene appear co-located with the physical world. Achieving a good alignment,
also called registration, is notoriously difficult and depends on good calibration of the
HMD [12]. AR requires trackers with high accuracies. Even though these are often
tethered there have been successful mobile indoor AR systems [13]. Figure 1 shows the
equipment that needs to be carried around by the user in a typical mobile AR setup.

Fig. 1. Equipment required for the tetherless version of our system: a laptop, a helmet
with an HMD and a camera, and the HMD electronics unit.

2.2 Architecture

Figure 2 shows the architecture of our system. The Ubicomp backend that runs our
location-aware environment is called SPIRIT [14]. It stores a virtual world model in a
database. This virtual world can be regarded as a mirror image of the real world. Every
real world “smart” object and person has a virtual CORBA [15] proxy that provides
an interface to their virtual state and capabilities. SPIRIT gives application developers
access to these interfaces. SPIRIT’s crucial property, however, is that the world model
is a spatial model of the physical environment that is managed by SPIRIT. As smart
objects and people move in the real world their locations and spatial relationships in
the world model are updated. SPIRIT can naturally only update locations if the real
counterparts are tracked by the Active Bat system.

The Active Bat [14] system used by SPIRIT is an indoor ultrasound location system.
With this system Active Bats (Fig. 3) can be located anywhere in our laboratory within
3 cm 95% of the time. The Bat is a small trackable tag that is about 85 mm long. Two
small buttons are located on the left side.

SPIRIT allows applications to subscribe to events. Using the spatial model of the
physical environment, low-level Bat sightings are abstracted to high level sentient events
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Fig. 2. How to bring an image of the virtual world into the real world. Solid arrows
indicate system interactions. Dashed arrows show conceptual relationships between the
virtual world, real world and the image of the virtual world. The important arrows have
been made thick.

Fig. 3. The Active Bat

to be used by application developers. Example high-level events are: “Andy is close to
Pete”, or “Andy is in the same room as John”. By using Bats to tag objects and people
we can let our applications reason about the spatial relations of objects and/or users.
Each lab member is equipped with a personal Bat that not only tracks them but can be
used to initiate actions in the location-aware environment (by pressing its two buttons).
Button press events are forwarded to SPIRIT in the same way as Bat movement events,
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which allows SPIRIT in turn to generate events such as “Andy’s Bat’s side button was
pressed while being held close to the monitor”. This allows application developers to
introduce interaction into their location-aware applications.

The most important abstraction of the SPIRIT system is a physical region. For each
object or person a set of regions is stored. These are predefined around the particular
person or object, having different sizes and shapes. High-level events are generated by
evaluating the overlap and containment of such regions. More on how to employ regions
to compute spatial relationships can be found in [14].

The question we faced was how would a visually interactive location-aware appli-
cation interface with the existing SPIRIT system. There are a number of issues here
but our main concern was that we wanted to visualise parts of the virtual world, i.e. we
wanted the user to see what is happening inside the SPIRIT system, rather than building
an interface that receives messages from a particular location-aware application in the
course of its execution. In the first case, visualisation and application are accessing the
same data structures, in the second case the visualisation is a client of the application.

The architecture devised to fulfill this requirement was an object-oriented Model-
View-Controller (MVC) architecture [16]. This implies that the application is modelled
as a set of triples, each containing a Model, a View and a Controller2. Each domain
object the application operates on is mapped to one such triple.

The visualisation essentially consists of constructing a 3D world on the user’s HMD.
This is achieved through a scene-graph-based 3D graphics package [17]. A component
called Renderer provides a platform to build visually interactive location-aware appli-
cations on. It takes care of all AR-related operations in order to separate them from the
core application logic. It also maps the view hierarchy constructed in the application to
the scene graph; views are organised entirely hierarchically in MVC.

Models in the application are images of the actual virtual proxies. These Models
are able to access the state and capabilities of the virtual proxies and can be regarded as
equivalent from the application’s point of view. The important connection is as follow-
ing: Models are representatives of objects living in the virtual world and Views merely
visualise them. The Views make up the 3D world the user sees through the HMD.
Hence, the user sees an image of the virtual world overlaid on the real world. We can
now relate the virtual state of a smart object directly to its physical embodiment.

We have conveyed a very high-level view of our system since in this paper we
are mainly interested in studying the effects of our system on users; a more accurate
description of our system for the purpose of reproduction can be found in [18].

3 Introducing Visual Interaction into a Location-Aware
Application

In order to put our interaction paradigm into practice we chose following approach: We
ported a location-aware application already deployed and used in our lab to our platform
so that it could provide feedback via the user’s HMD. The ultimate aim was to compare
two versions of essentially the same application.

2 The original MVC allows models to have multiple Views, but we only need one View per
Model to generate the AR overlay.
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3.1 A Typical Location-Aware Application

The application we chose to port for our user trial is the Desktop Teleport application
already deployed in our lab. Many GUI environments allow you to have different Desk-
tops, each containing a particular set of applications, documents and settings. In this
location-aware teleport application, users can walk up to a computer, press a button on
their Bat and have a Desktop that is running on a different computer “teleported” onto
the current computer. VNC [19] is used in order to achieve this. VNC stands for Vir-
tual Network Computing and allows users to access their GUI Desktop remotely from
any computer. The computer running the Desktop locally contains a VNC Client that
is listening to “connect Desktop” events from the middleware, which are initiated by
the Bat button press. When it receives such an event it connects to a VNC server which
then sends bitmapped images showing its current screen to the client. The server re-
ceives mouse and keyboard events in return. It is important to note that users can have
multiple Desktops running simultaneously.

One use for this application would be to walk up to a random computer in the lab,
click the Bat button and bring up your personal Desktop that contains your email inbox.
After checking your email you can disconnect. All of this is done without having logged
in or out.

The teleport application makes use of “active” regions defined around computers
in our lab. When users enter one of these active regions, the Bat buttons invisibly gain
functionality. The upper button cycles through the Desktops of the user, since she can
have more than one running. The user can see a different Desktop on the screen every
time this button is pressed. It is possible for the user’s Bat to be in two teleport regions
simultaneously. This could be the case if the user is, say, working on two computers
that are next to each other and their teleport regions happen to overlap. The lower Bat
button will then cycle through available machines.

Sometimes users choose to turn off teleporting, say, because they want the buttons
to have some other functionality. Currently, this is being done by holding your bat at a
specific location in space and pressing one of the Bat buttons.

The description of this application will immediately reveal a number of potential
usability problems.

– One problem is that the Bat can invisibly take on different functionalities according
to where in the physical space it is located (inside or outside a teleport region).
With many applications running simultaneously this can become a considerable
problem; in general, applications can turn any part of the physical space into an
“active” region.

– Another problem is the different concept of the active region that system and user
have. In the teleport application the design idea is that the user’s Bat starts control-
ling the Desktop when she is standing in front of the computer. The SPIRIT system
evaluates this by testing for a region overlap as described in Sect. 2.2. The user, on
the other hand, does not use regions in order to understand the concept of “in front
of a computer”. The result is that user and computer will have slightly different
ideas of where the teleport region is.

– Finally, we face the usual problems of applications without a feedback path. The
“nothing happened” syndrome is notorious in our lab. Basically, error diagnosis by
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the user is impossible and the only advice given to users is to try again and email
support.

In many ways the application is typical for what we might expect from location-
aware applications, should they become pervasive. It contains a mix of implicit (user
location) and explicit (button press) interaction . It needs to deal with user settings (tele-
porting on or off). Furthermore, it involves a networked service (teleporting service).
Finally, it uses location contexts that are more fine-grained than rooms.

3.2 Interaction Prototypes

One of our aims when introducing this interaction paradigm was to supply a set of
widgets with it as well. The question was what kind of widgets will AR-based visual
interaction in Ubicomp environments require? In a large survey of Ubicomp applica-
tions we found a number of patterns of interaction. The set of widgets [18] we built
for these patterns is centred around the Active Bat as a personal interaction device. The
concept of a personal interaction device that is always carried around by the user has
been suggested in previous Ubicomp literature [20,21]. A big advantage such a device
has is that you can use it to address the system (in Bellotti’s terms [2]).

In the next section we will discuss two of our widgets in use in a real application:
Bat Menu and Hot Buttons.

3.3 The First Interactive Application in Space

Using object-oriented analysis we identified all objects of interest and split them up into
Models, Controllers and Views. The Bat buttons that had previously gained functional-
ity invisibly were now labelled using AR. We employed our Hot Buttons widget which
is similar to the way “hot buttons” work on mobile phones. Their descriptions change
according to the context.

The teleport region, also previously invisible, was read from the world model and vi-
sualised as a polygon in space. The current machine was indicated by an outline around
the actual monitor. Figure 4 shows what the user sees through her glasses when walking
up to a computer. Users can now see where to place or where not to place their Bat in
space in order to achieve what they want. We use stereoscopic see-through glasses in
order to support depth perception, which is necessary when you are visualising regions
in “thin air”.

When the user walks into a teleport region, new labels appear on her Bat buttons,
signifying the relevant functionality. They disappear when the user leaves the region.
Inside the region the user has the ability to switch through her Desktops. As previously,
this is accomplished by the user pressing the upper button on the Bat. We decided to
visualise this interaction using our Bat Menu. A menu appears overlaid next to the Bat
with each item indicating a Desktop by name. As the user presses the upper Bat button,
Desktops switch through on the computer as before, but now she sees a red outline on
the menu jumping from item to item. The current Desktop on the computer and the
current menu item always match. The augmented Bat with the menu is shown in Fig. 5.
The menu of Desktops is controlled by the button marked by the overlay “Desktop>>”.
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Fig. 4. Users see the teleport regions through their glasses. The regions are shown just
below both monitors (The HMD is see-through, so the real-life scene is not present in
the computer-generated image. Therefore, the composite must be simulated in order to
show it here.).

Fig. 5. The augmented view of a Bat while inside a teleport region. Square menu items
show desktop names (here too, the composite picture is simulated).
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Teleport-able machines (computers) will have a green outline overlaid around their
actual monitor. Using the lower Bat button, labelled in green, the user can cycle through
the machines, a bright green outline jumping from monitor to monitor indicating the
current machine.

A big influence in designing the interaction was Norman’s conceptual model [10]
methodology. Its idea is that as a designer you create a model for the user by commu-
nicating to her (visually) how to use your product; in essence the designer is translating
a user manual into visual design.

Applying it to our design meant that we had to make sure that in each use case
the application always shows the user what is possible, how to achieve it and how to
evaluate whether you have achieved it. As an example, users of our Bat Menu can
instantly identify each of these.

4 User Evaluation

The visual and non-visual version of the teleport application were now compared against
each other in a user trial. One feature not included in the trial was the ability to switch
between machines that are located next to each other; this feature is generally not used
in the lab. Instead you can now control the state of the teleporting service using the
lower Bat button, no matter where you are standing.

The visualisation shows the teleport regions around the computer in which teleport-
ing can be initiated using the Bat button labelled with the AR overlay “Desktop>>”.
The second button has an overlay label that reads “Teleporting is on” or “off”, depend-
ing on whether you are inside our outside of the teleport region. Pressing it will toggle
the label from one state to the other.

4.1 Method

The number of test subjects was chosen to be ten. Five of the test subjects can be
regarded as novices and five as experts depending on their familiarity with location-
aware applications.

The trial consisted of 5 parts. Each of the two experimental parts was preceded
and followed by an interview part. The first experiment was a test involving the non-
augmented teleport application, the second, the augmented teleport application. One
might argue that performing these two parts in sequence will result in users being more
familiar with the application when they use the augmented version of the application,
but the experiment had to be done in one order and this was the most sensible one.
Furthermore, the test subjects were given time to familiarise themselves with the appli-
cation before they were tested.

The aim was not just to get their answers to questions but also find out why they gave
particular answers or performed in a certain way. Therefore, we used a combination of
short answer questions, and open questions that encouraged the test subject to talk; for
the experimental part we employed user observation and thinking aloud techniques.
The tasks consisted of giving answers to what if questions while using the application.
Interviews were flexible with the evaluator drilling down to detail if the test subject
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had something interesting to say. The tasks and initial interview questions, however,
remained the same for all. The guide used for the experiments/interviews is shown in
Appendix A. We are only presenting our most important results. Details can be found
in [18].

One premise we use for the interpretation of our observations is the mental model
theory. Mental model theory [22] assumes that humans form internal representations of
things and circumstances they encounter in everyday life in order to explain how they
work. One important aspect is that these representations are “runnable” in the head,
i.e. they can be used in order to predict the result of a particular interaction with the
world. They are not always accurate, which is why humans can have misconceptions
about the effects of their interaction. Nevertheless, a mental model can be updated to a
more accurate one when a situation occurs where a misconception becomes obvious.

4.2 Lessons Learnt

Users Can Be Provided with a Conceptual Model of a Location-Aware Applica-
tion The conceptual model methodology [10] briefly introduced in Sect. 3.3 assumes
that humans make mental models about applications or products we design and that
designers can influence the formation of these3. Two questions we were interested in
were:

1. What do the internal representations that users make of location-aware applications
look like?

2. Can we, through our visualisations, influence the mental model they make of the
location-aware application?

The basis for eliciting the mental models users built of the application are the what
if questions (Appendix A), the explanation of how the application worked and an addi-
tional task given to the test subjects. The additional task was described as following:

Imagine you want to provide a manual of the application for other users. Instead
of a description can you draw a diagram for this purpose. Try not to use text if
you can.

First of all, we can say that the mental model theory is suitable to explain our find-
ings. Users are able to answer questions about what the effects of particular actions
are using their mind only. When building these models users make certain assumptions
about how things should work. For example, one test subject thought you need to point
the Active Bat at the monitor in order to teleport. This, even though neither the Active
Bat nor the monitor show any clues that a directional signal is used between them. An-
other test subject thought the teleport regions exactly coincide with the extent of the
desks on which our computers stand.

Interestingly, we observed that such misconceptions were not at all limited to novices.
In fact every test subject had some kind of idea of where teleporting would be active.

3 We are using a broad definition of conceptual model here.
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Especially, the case of the person who associated the desk extent with the teleport re-
gion for no logical reason, shows that users might need to have some visual idea of
where this region is. So, by trying to aim for invisibility we leave a gap in the user’s
mental model that is filled by self-initiative.

Another observation is that mental models about the application can vary a lot. For
example, one of the test subjects, in his explanation employed no metaphors at all.
The drawing produced by him even includes a reference to a variable and a lot of text.
So, in general we can say that this is a non-visual person. As a contrast another person
produced a drawing in which he visualises the on/off button as a light bulb. His depiction
is fairly concrete, like an image. This by the way was the only fully correct “manual”
we received. Another person seemed to have a more procedural model. His “manual”
includes a number of different cases that “work” or do “not work”. He depicted four
cases, varying the distance and position of the Bat to the monitor and also the teleport
setting. Two other notable metaphors that were employed by the users were, viewing
the Bat as a remote control and viewing the application as a state machine.

Fig. 6. Full marks for this diagram. The test subject has a good mental model of the
application

We shall now examine how the visual interface affected the user’s mental model of
the application. Two “tricky” bits can be identified in this application. Firstly, the fact
that teleporting only works if the user is standing in a particular region and, secondly,
the fact that the teleporting state (on/off) influences the function of the first Bat button.
Teleporting will not work outside the region but will only work inside it if teleporting is
enabled. On the other hand, turning teleporting on or off will work independently of the
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location. This makes sense, since users want to turn teleporting on or off independently
of their location.

It was found that the overall understanding of the application was much better dur-
ing and after the use of the visualisation. When users were asked to explain how the
application works before and after using the visual interface, in general their second ex-
planation was much deeper and more detailed than the first one, especially with respect
to the two above-mentioned non-straightforward concepts. The answers obtained in the
interviews corresponded to the observations made during the experiments. Seven test
subjects had problems working out the what if questions whereas nobody had problems
with the visual version.

Fig. 7. All test subjects using the visual version could work out all answers.

Visualisation Reduces the Load Location-Aware Applications Pose on the User’s
Working Memory We stated earlier that users were able to answer all what if questions
during the visual experiment. Partly, this is due to the increase in user understanding we
identified afterwards.

However, the fact that the interface shows you your context, i.e whether you are
inside a teleport region or not, we found was somehow disproportionately helpful in
answering the what if questions. It seemed that thinking about whether you were at
the right location “blocked out” thinking about whether teleporting was actually on
or off, i.e. visualising where something will work, freed cognitive resources for other
processing. Remember, that in order for the user to evaluate whether a teleport will
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be successful two conditions need to be fulfilled: the user needs to be in the teleport
region and teleporting needs to be enabled. The fact that this error was so consistently
performed struck us as odd.

After consulting some research on systematic errors the most plausible explanation
is that what we had witnessed was a working memory overload. According to one the-
ory [23], systematic errors are performed when the working memory goes beyond a
threshold, but are not performed at all when it is below that threshold. This is one of the
more unexpected results of this user trial. Even though we have been using location-
aware applications for years in our lab the load some of them pose on the working
memory is not mentioned when users are asked about usability problems.

Let us enumerate the items that need to be kept in the user’s short term memory for
our application: which Active Bat button to use for teleporting, where to stand, whether
teleporting is enabled, how to enable it and whether the machine has a listening VNC
client running on it; and all of this is just for one application. Looking at it from this
perspective it becomes clear how a memory overload could occur.

Another observation was that only expert users could remember how many Desk-
tops they have running at the beginning of the experiments. Many users in the lab have
Desktops running for months because they forget about them. Since Ubicomp is sup-
posed to support unstructured, often interrupted tasks, offloading memory requirements
is desirable.

Visualising the Ubicomp System Could Create a New Kind of User Experience
We shall now examine the effects of introducing visualisation on the general user ex-
perience. This is not a full evaluation of how the user experience changes if you are
experiencing all location-aware applications through an AR interface. Many more ex-
periments with a non-prototypical system would be required for that. Nevertheless, we
can obtain hints as to how the user experience will change if visualisation becomes
more widely used.

Users were generally very happy with the visual interface. Nine out of ten test sub-
jects made positive or very positive statements in this respect. One of the test subjects
said that the Augmented Reality interface lets you know that “the application is not
broken”. She was an experienced user of location-aware applications and this seemed
to be her biggest problem with location-aware applications in general. The remark says
more about the user experience users currently have with “invisible” location-aware
application than it applies to the visually enhanced version.

Interestingly, providing users with a better kind of location-aware application made
clear to us what users had been missing, or rather been putting up with so far:

– Especially experienced users appreciated the fact that the Active Bat could give
visual feedback. The only feedback received currently from our Bats is audio in the
form of beeps of different pitches. One test subject explained that when she hears a
beep or a sequence of beeps she has “no idea of what is going on”.

– Another test subject said he would not rely on the teleport application currently
deployed in our lab and would always have a backup if he planned to use it in
order to teleport his desktop containing presentation slides to a presentation room
(a popular use of the application).
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– Finally, one misconception a user had of the existing teleport application was that
he had thought the teleporting region was only a small region around the monitor.
What was peculiar, was that he was a frequent user of the existing teleport applica-
tion. He did not realise that the teleport region was a lot bigger, simply because he
only uses the small region in front of the monitor.

What these examples show is a particular attitude towards location-aware applica-
tions. Apparently, users hardly explore them. They are conservative in the sense that
they only use what they know works and even then they are in a constant state of un-
certainty as to whether it is performing or not. This is, of course, not the attitude we as
designers can allow the users to have. What needs to be done is to work on changing
this user experience. We need to spend time thinking how we can give users the feeling
that they can rely on, even play with, the applications without breaking them.

In this context, what was mentioned again and again was a kind of “coolness” factor
experienced by users using the Augmented Reality interface to the location-aware appli-
cation. Possibly, by generally introducing more enjoyable features into location-aware
applications we can influence the user experience.

4.3 User Feedback

At the end of the experiments test subjects were asked what was the most desirable and
worst feature of the system. The following gives a list of the most desirable features
mentioned: Feedback, predictability, “coolness”, explicit showing of location contexts
and visualisation of the Desktops as a menu.

Most of these points have already been discussed in the previous sections. There is
no clear cut definition for “coolness”, but it is the adjective used by several test subjects.

The most undesirable features can be listed as: Calibration, bulkiness of hardware,
slow update rate and the limited field of view.

Calibration relates to a short (10 s on average) process to be performed once for
the experiment by each user. Test subjects had to adjust the HMD until they would see
a virtual cube on a particular location. The slow update rate is not a property of the
head tracker but comes from the Active Bat system (around 2 to 3 Hz). Hence, only
location updates of the Active Bat overlay suffered from this problem. The rest of the
application was running at 30 Hz, the update rate obtained by the tracker. The limited
field of view is due to the HMD. Since it contains mini-monitors it uses to generate the
virtual images, its field of view cannot wrap around the user’s head.

Initially, we had expected that achieving accurate enough overlay for interaction
with a location-aware application might be difficult. However, we were able to resolve
this issue by careful pre-calibration of the HMD to an extent that misalignment was not
mentioned as an undesirable feature by a single user. In general, we found that users
had no problems fusing the virtual and real image, i.e the visualisations were in deed
regarded as being co-located with the real world and not interfering with it.

It has to be said that undesirable features were hardly ever mentioned in the inter-
views. It was only after prompting test subjects that these were mentioned. This does
not mean that these features are negligible. In fact most of these will become bigger
problems when users have to wear HMDs for a longer period than a few minutes. On
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the other hand, we are not proposing to deploy this system at the present time in its
present form. This is only a starting point and the future will show in which direction
this research will develop.

5 Outlook

The limited display facilities we have in Ubicomp can prove to be a potential stum-
bling block in developing this research further. Not everyone feels comfortable using
an HMD. Also, most real world locations are not fitted with an accurate tracking sys-
tem. Before exploring a number of alternatives we would like to make clear to what
extent our system is independent of the Active Bat system and the use of an HMD.

As Fig. 2 shows, our system receives updates about location changes and button
presses in the form of sentient events. Such events can be generated using any location
technology. Also, MVC makes no assumption about the display technology used. Any
display technology can be used provided that a View object has access to the display.
It makes architecturally no difference whether the display technology used is a PDA,
projector, LCD display or an HMD. In each case a View object will be receiving updates
from the Model and display-specifically mapping these to visualisations.

Let us look at the practical implications of different display and sensing technolo-
gies. Overlaying visualisations on movable objects (such as the Bats) is not possible
without an accurate tracking system. However, if real world objects themselves provide
a small (colour) display there is no need to track them to such a high accuracy4. The
power consumption of such displays can, of course, be a limiting factor for years to
come.

Nonetheless, other opportunities to visualise Ubicomp applications exist. Projector-
based visualisation such as the Everywhere Display [24] appears promising. By com-
bining a camera with a projector, interactive visualisations can be created on real world
objects. Most notably, it allows us to visualise “active” regions as long as there is a
display surface available, such as the floor.

PDAs can also be used to render visualisations. One of its more sophisticated uses
would be to use it as a “portal” [13] to the virtual world. Wagner et al. [25] recently
presented AR on a PDA. The PDA uses a camera and overlays virtual images on the
live feed. The PDA could show users the same visualisations we have used.

Finally, less obtrusive displays than the one we used, almost indistinguishable from
normal eyeglasses and better suited for day-long wearing, have been on the market for
a couple of years now.

This discussion, however, should not distract us from the main point of the paper.
The study of the effects visualisation has on users is to a large extent independent from
what technology we use. The user experience after introducing visualisation did not
improve because users were impressed by AR visualisations, but because they were
feeling much more in control.

4 The objects still need to be tracked in order to create location-aware behaviour, but the accu-
racy required can be far less, depending on the application.
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6 Conclusion

The physical disappearance of the computer in the Ubicomp paradigm will continue to
lead to usability problems. Users have difficulties in using hidden features of “smart”
objects and in understanding what virtual implications their actions have, or in fact
don’t have.

Our hypothesis has been that we can increase application intelligibility by visualis-
ing such smart applications.

In order to test our hypothesis we built a system to upgrade location-aware applica-
tions with Augmented Reality visualisation capabilities. We stress that our prototype,
while not of production quality or particularly comfortable is not a demo but a com-
plete, usable system. We applied it to an application that is already deployed and used
in our lab: Desktop Teleporting. For the first time a location-aware application had a
chance to present its inner workings to the user. Most notably, we were able to show
users spatial aspects (such as regions) of an application that operates in the physical
world.

We then carried out a small-scale but carefully conducted user trial whose outcome
validated our hypothesis. In nearly all test subjects we witnessed an increase in user
understandability. On the basis of the mental model theory we were able to establish a
link between our hypothesis and the result.

Most importantly, using Augmented Reality we were able to give our test subjects,
for a limited time, a novel and much more empowering user experience. We believe that
visualisation will be a fundamental component in making Ubicomp applications easier
to understand and use. We hope and expect that this paradigm will be widely adopted
in future computing environments.
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A Guide Questions to Be Used by the Evaluator

1. How many Active Desktops do you have?
2. Is your Teleporting on or off? Would you prefer to control it from your bat or a

”SPIRIT Button” on the wall?
3. What do you know about Teleporting?
4. How does it work? (For novices delay this question, until they have explored the

application)
5. Evaluator: identify concepts, conventions and prompt user
6. Can you Teleport to the broadband phones? Our phones are embedded computers.

The aim of this question is to find out whether they believe that every computer in
the Lab “affords” [10] teleporting.

7. Evaluator: Explain experiment.
8. Experimental Part I begins. Evaluator: Let user play with invisible application,

observe difficulties.
9. Evaluator: Ask “what if” questions involving one Bat press, user movement and a

Bat button press and combinations of the two. Experimental Part I ends.
10. Imagine you had to give another user a manual for this application. Can you make

a drawing instead?
11. Experimental Part II begins. Evaluator: Let user play with visible application, ob-

serve difficulties.
12. Evaluator: Ask “what if” questions involving one Bat button press, user movement

and a Bat button press and combinations of the two. Experimental Part II ends.
13. How does it work?
14. Evaluator: identify concepts, conventions and prompt user
15. Teleporting is best described as a property of: Space, Bat, Machine, ”System”, Bat

System, other:
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