
Writing Tcl programs in the

Medusa Applications Environment

Frank Stajano

Olivetti Research Limited Phone: (+ 44 223) 34.30.00
24a, Trumpington Street, Fax: (+44 223) 31.35.42
Cambridge CB2 1QA, England (U.K.) E-mail: fstajano@cam-orl.co.uk

Abstract

Medusa is an applications environment for distributed multimedia which has been de-
signed and developed at the Olivetti Research Laboratory in Cambridge, U.K. The soft-
ware building blocks, or modules, are written in C++, while the applications that create
networks of modules and make useful things with them are written in Tcl/Tk/Tcl-DP.

The Medusa system

The backbone of the Medusa

system is an ATM network

which, by virtue of its high

capacity and low latency, is

capable of shipping multiple

simultaneous audio and video

streams between the various

peripherals and workstations.

The multimedia devices such

as cameras, microphones and

speakers are connected directly

to the network rather than be-

ing physically attached to a

specific workstation. This pro-

vides uniform and

unconstrained scalability to a

multistream setup: to equip a

workstation with multiple

cameras, so that the viewer at

the other end can select be-

tween a talking head and sev-

eral wide-angle views of the of-

fice, all that is required is to

plug more cameras into the

network wiring. The network

becomes the important data

bus of the system, taking over

the workstation�s bus. And

looking through a remote cam-

era does not have any extra

performance cost with respect

to looking through a local cam-

era.

A Medusa workstation equipped with multiple cameras, speakers and microphones.
Note the ATM network switches in the lower right, just under the video bricks.

The main features of Medusa are modularity

and the ability to process the raw data. The

software architecture is such that every de-

vice in the system � source, sink or unit of

processing � is represented by a software

�module�; modules can be connected together

and data will flow through them. The behav-

iour of the system can be dynamically changed

by inserting or removing modules from these

pipelines. From a software point of view, mod-

ules are self-contained entities that can be

written independently of each other. A video

compression module may be written entirely

in software and then later replaced by another

module that instead drives a hardware com-

pression card. The system never uses any

video overlay techniques: all the multimedia

data actually goes through the modules; this

enables us to include analysers and proces-

sors in the pipelines. One interesting example

of this is an application where the user can

position sound in a quadraphonic space by

waving a hand in front of a camera whose

output is piped into a �virtual mouse� image

analysis module.

This laboratory has developed numerous

�ATM Direct Peripherals� such as cameras,

video tiles, audio AD/DA cards, and disk

arrays; these devices are built as small inde-

pendent networkable computers, all based on

the same general purpose board which con-

tains a network interface and an ARM proc-

essor running our in-house micro-kernel,

ATMos. Modules, being the software compo-

nents that can handle the raw multimedia data,

generally live in close contact with the hard-

ware they control; they are written in C++,

sometimes with an inner assembler core for

the most time-critical sections like handling

audio samples. Every ATM Direct Peripheral

runs some ATMos processes that contain

Medusa modules and uniformly expose the

functionality of the device to the rest of the

Medusa system.

Medusa is also integrated with the Active

Badge� personnel and equipment location

system at the ORL laboratory. One can ask

the system to make a connection to a specific

user; the system will then find the location of

the user, find out what Medusa devices are

currently available at that location, and make

the appropriate connections to these devices.

No manual database updates are required if

equipment is moved from one office to an-

other.

The integration of Medusa and Tcl

For obvious efficiency reasons we do not use

Tcl to handle the multimedia data; instead we

use it as a configuration language to control

the way in which modules should be con-

nected together. Modules are not written in

Tcl, but whole applications, which use the

modules as prepackaged components, are.

The Medusa modules have been made acces-

sible to Tcl using the same object-oriented

approach that Tk itself uses for its X widgets.

Consider a standard Tk widget: its name is

also a command that can be used to control

the behaviour of the widget. The same thing

happens with Medusa modules: after creation,

the module name becomes a new Tcl com-

mand that accepts subcommands. These

subcommands, or methods, allow the pro-

grammer to configure the module, connect it

to another module, query its state and so on.

Every module has a set of attributes (internal

variables) which can be read and written with

the getattributes and setattributes methods.

Changing an attribute may have the side ef-

fect of modifying the behaviour of a module,

as in the case of the frame_rate attribute of a

camera module. The attributes can be changed

by the module itself, and can indeed even be

read-only, as in the case of the level attribute

of a VU-meter module. Using the

watchattributes method it is possible to reg-

ister a Tcl callback that will be invoked when-

ever the value of an attribute changes, much

in the same way as can be done with the Tcl

command trace on ordinary variables. This

allows a graphical Tk-based VU-meter to fol-

low in real time the variations reported by the

corresponding module without having to poll

the module to periodically retrieve the value

being monitored. Since modules can also

model external devices like a remote control,

the watchattributes mechanism also provides

a way to activate Tcl procedures using input

devices that are not tied or even related to the

workstation. �Buttons�, �sliders� and other

controllers are no longer limited to on-screen

widgets that have to be clicked upon with the

mouse: they can be real-world objects that

combine flexible software-defined semantics

with a physical, tactile feel.

To provide higher efficiency all the module

methods support an asynchronous mode of

operation, where the program requests an ac-

tion and the command returns immediately,

long before the action (which goes on on its

own) has completed. This as opposed to the

synchronous case where a command only re-

turns after it has run to completion and can

report whether it succeeded or failed. To make

this asynchronous mechanism useful, every

module method accepts the -success and -fail-

ure options, which specify Tcl callback com-

mands to be evaluated when the main com-

mand has reached completion. For these com-

mands where a return value is meaningful, the

returned value is appended to the callback

command before evaluation.

Medusa applications

The full power of Tcl and Tk is available to

write complete multimedia applications using

the modules as building blocks. So far two

major applications have been written: Sticks

And Boxes, a test tool that gives visual access

to the modules, and MDphone, a multistream

videophone system.

Sticks And Boxes

This application provides a graphical user in-

terface to the task of creating modules and

plugging them together. The name of the pro-

gram refers to the visual appearance of the

interface elements, which are implemented as

Tk canvas items: modules are shown as boxes

with nozzles as their data ports, while data

connections are shown as sticks joining the

boxes. A browser lets you examine all the

module factories currently available anywhere

on the network to find the ones that will cre-

ate the desired modules. A few mouse clicks

are sufficient to instantiate and connect a mi-

crophone module here and a speaker module

next door, effectively creating a simple audio

link between two offices.

Once a module has been created, clicking on it

produces a panel exposing the attributes, which

can then be inspected and modified interac-

tively even while the multimedia data is flow-

ing. Sticks And Boxes has no embedded knowl-

edge about the various modules, but it will still

correctly expose the attributes for every mod-

ule that it comes across, presenting an inter-

face that is appropriate to the type of the at-

tribute being shown. Boolean attributes are dis-

played as checkbuttons, enumerations are dis-

played as a set of radio buttons, integers within

a certain range (such as a volume control) are

displayed as sliders and so on. For each mod-

ule, Sticks builds a control panel tailored to

the particular attributes of the module. This is

achieved using a special read-only text attribute

that every module has, which lists all the at-

tributes of the module together with their type,

default value, read/write status and so on: every

module is thus self-describing and tools such

as Sticks maintain their generality as new mod-

ules are written.

MDphone

The Medusa video phone system rejects the

conventional constraint of using a single cam-

era and microphone per multimedia

workstation. Standard Medusa-equipped

workstations feature an X11 display, four hi-

fi directional microphones, four hi-fi speak-

ers and four digital colour cameras. One of

the cameras provides the �talking head� view

when the user is sitting at the computer; an-

other camera, vertically mounted on a wall

stand, focuses on a free area of the desk where

the user can display a document or a book; the

other cameras give a wide-angle view of the

whole room from different points of view. The

same goes for the microphones which, by vir-

tue of their positioning, can pick up high qual-

ity speech even when the user is not in front of

the computer. This encourages a wide-band

communication, where the user can walk

across the room and draw up a diagram at the

whiteboard while still talking to the corre-

spondent at the other end.

The system has been implemented as a dis-

tributed application using Tcl-DP. Every

phone is a separate process, running on its us-

er�s computer. There is a central server, con-

ceptually equivalent to the phone exchange,

to which all the phones are connected. A list

of the currently connected phones is broad-

cast by the server whenever there is a change.

The dp_atclose callbacks are widely used to

ensure that the sudden death of a process will

not confuse the remaining running processes.

Sticks And Boxes shows a pipeline of modules sending pictures from a network camera to an X11 window. The modules with the
thick border are factories. The factory browser window and an attribute panel window are also visible.

The user interface tries to present all those

streams in an organic and meaningful arrange-

ment, avoiding an excessive proliferation of

controls. In view of the extension to a multi-

way conference system, all the views from the

same user have been grouped in a single

toplevel window with many subframes. All the

views are shown in small frames and one of

them � selectable by the user � is replicated

in a larger frame. There are plans to make this

selection automatic if desired by using an

image processing module that would recog-

nise which camera the user is facing; this is

already being done for the audio, where the

system dynamically switches to the micro-

phone with the loudest signal. Moving the

composite window on the desktop actually

pans the sound in the quadraphonic image, so

that in a multi-way conference the audio po-

sitioning of the participants is coherent with

the positioning of their respective windows.

Advantages and disadvantages of

using Tcl in such a project

Using Tcl has been a great plus for this project,

especially when compared to the original so-

lution of adopting an ad-hoc configuration

language to plumb modules together. With

respect to that alternative, Tcl has given us a

much greater flexibility and the expressive

power of a full programming language.

The main drawback has been the difficulty of

managing large programs in a programming

environment that provides no static consist-

ency checks. A consistent coding style and

the use of self-contained autoloading librar-

ies may help in keeping the problem under

control, but explicit checking tools would be

very welcome.

Some efficiency problems were experienced,

but they were largely offset by the conven-

ience with which a running prototype could

be produced. Ease of prototyping has been a

great asset in experimenting with new ideas

and has proved to be the right approach for a

research environment, so much that Tcl/Tk has

rapidly spread to other unrelated projects in

our lab.

Acknowledgements

I would like to thank Stuart Wray, who de-

signed and implemented the Tcl interface to

Medusa, and the many colleagues at Olivetti

Research who provided helpful feedback on

the usability and desirable functionalities of the

Medusa applications I wrote.

Frank Stajano obtained his
degree in electronic

engineering in 1991 from
the university of Rome,
Italy. He joined Olivetti

Research Limited in late
1992, where he has been
working since as the Tcl

applications programmer
for the Medusa project. His

interests include Walt
Disney comics and human-

computer interfaces.

A two-way multistream conversation using MDphone

