Programs as probabilistic models

Brooks Paige
UCL Al Centre
1 Nov 2023

(Generative models”?

aG8?PY

Can you write a
program to do this?

-orward models are "easy’

Kol erll W
£

(0 1IN LE)E et LD

Can you write a program
to solve Sudoku problems?

Can you write a program
to generate Sudoku problems?

4
D
5
8
;

I NI G E N O O Lng IS
N W| DI N O]l Ol | /|
AN OIN]| Y|l Ol 1T U] | W
sl Il ol =21 A Dl DNl NPl o

—
G e Ry

Vlodel relationships between many variaples

arrows: causal relationships

‘ecent travel circles: random variables
abroad"
CEONRCEDY

Infer either tb. or
lung cancer?
abnormal \ shortness of \ =" Observed
X-ray’? breath?

Lauritzen & Spiegelhalter, 1988

Quantification of uncertainty

N ®
4>~
~
~
~
S
_ ~
3 NP ®
So ® O
\\\
2 - S O
S O
S
N
1 - ~
~
xS
N
- ~S®
~
~ o N
~
~
—1 - RO
S

_2 -
_3 -

Motivation: models in machine learning

Data Generative Model Inference
(input) (assumptions) (output)

12 -
11 -
10 -
9 ’ .
8 -
7 -
o o 2

-

U, 2. ~ NormalWishart() > Gibbs Sampler
— z . ~ Discrete(7)
Y n ~Normal(w, , 3,)

Prediction

Task ~ Expectation

Maximization

Motivation: models in machine learning

Data Generative Model Inference
(input) (assumptions) (output)

Machine Learning Software
U, 2. ~ NormalWishart() Gibbs Sampler
Prediction . el
Task —_— z . ~ Discrete()
as ~~ Expectation

Y n ~ Normal(p, , .)

Maximization
(Math) (Model-Specific)

Motivation: models in machine learning

Data
(input)

Prediction
Task

Generative Model Inference
(assumptions) (output)

12 -
11 -
10 -
n 2]
9 — ’ _
8_
7—.
o o lad

lll

Modeling Inference
Language Back End

(Program) (Model-Agnostic)

.
--

Parameters

|

Algorithm

Random

variables

Programming

Model

Data

Statistics

Inference

Intuitive view of probabillistic programming

Random
variables

Algorithm
(Model)

|

Output
(Data)

Probabilistic
Programming

A probabpilistic program

"Probabilistic programs are usual functional or
imperative programs with two added constructs:

(1) the ability to draw values at random from
distributions, and

(2) the abillity to condition values of variables in a
program via observations.”

Gordon, Henzinger, Nori, and Rajamani
“Probabilistic programming.” In Proceedings of On The Future of Software Engineering (2014).

2020

2010

2000

1990

. anguages and s

PL

FD

|

HANSEI

Discrete
Support

IBAL

Al
Figaro
ProblLog
Blog
ALisp
PRISM ICL

Dynamic PyrO

Support probtofch

ystem

Gen Birch

S

STATS

webPPL efiwara

Probabilistic C
Venture Anglican

Church
Infer.NET

Factorie

KMP

LibBI
STAN

PyMC
JAGS

WIinBUGS

Static
Support

BUGS

Why would we do this”

Question: \Why are you writing a probabillistic
orogramming language?

Answer 1: |'m really tired of writing the same inference
Code again and again for each new model!

Answer 2: dguhﬁve ﬁmromﬁ?phcpmde\ | can simulate from,
but | have no Idea how to condition it on data!

An example BUGS program

a b

_1 v

L .Af(awé>) ‘E’

yi~N(z,c), i=1,...,N '
() ()

model {
X (a, 1/b) Language restrictions?
f 1 in 1:N |
or E—L] 1{1) EX /) Model class?
. y ’ Inference?

}

Spiegelhalter et al. "BUGS: Bayesian inference using Gibbs sampling”

An example BUGS program

data
list (t

c(94.3, 15.7, 62.9, 126, 5.24,

, 31.4, 1.05, 1.05, 2.1, 10.5),
@ y = c(5, 1, 5, 14, 3, 19, 1, 1, 4, 22),
@ N = 10)

\ N # 1nits
list(a = 1, b = 1)
model
Loop Iterations {

for (i in 1 : N) A
thetali] ~ dgamma(a, b)
1[i] <- thetali] * t[il
y[i] ~ dpois(1[il)

are deterministic!

+
a ~ dexp (1)

_ b ~ dgamma(0.1, 1.0)
No If statement }

(nO branChing) Program 2.7: The Pumps example model from BUGS (OpenBugs, 2009).

‘Inference first” approach to PPLs

‘I never want to write this inference code again!”

Inference Models Language
Gibbs Finite Bounded loops;

Sampling graphical models no branching
Hamiltonian Continuous latent Bounded loops;
Monte Carlo variables no discrete r.v.s
Expectati_on Factor graphs Finite composition
Propagation of factors

Infer. NET

Pros: these languages work.

Cons?

-xample: "Anglican’

Anglican is a luring-complete probabillistic programming language
embedded in Clojure.

(Disclaimer: | helped work on developing it back when | was at Oxford)

Other similar (and probably more current) projects:

turing.jl (Cambridge), gen (MIT), Birch, PyProb (UBC), webPPL, ...

Syntax: basically Clojure (similar to LISP)

* Notation: prefix vs infix

(+ 1 1)

(- 10 3)

(/ (* 10 (+ 2.1 4.3)) 2)

* Branching

(+ (if (< 45) 12) 3)

FUNCtioNs

 Functions are first class

((fn [x y] (+ (* x 3) v))
10
2)

* Local bindings

(let [x 10
y 2]
(+ (* x 3) v))

Higher-order functions

* map

;5 Apply the function f(xz,y) = x + 2y to the
;; ¢ values [1 2 3] and the y values [10 9 8]
;5 Produces [21 20 19]

(map (fn [x y] (+ x (* 2 y)))

1 2 3] ; these are values 1, z2, x3

(10 9 8]) ,; these are values y1, y2, y3

 reduce

;; Reduce recursively applies function,
;5 to result and next element, 2.e.
(reduce + 0 [1 2 3 4])

;, does (+ (+ (+ 0 1) 2)

;5 and evaluates to 10

The need for higher-order languages

Unfortunately, restrictions can be quite limiting!

Simple example: sampling from a geometric distribution, by counting

number of failures before first success, in independent
Bernoulli trials

D’Q“l'p
(defm sample-geometric [p]

(if (sample (flip p)) @ IO’/O\‘HO
0
(+ 1 (sample-geometric p)))) @ IO’/OJ'IO

Other way around: language first

Unrestricted Languages:

e “Open-universe”: unbounded numbers of parameters
 Mixed variable types
e Access to existing software libraries

o Easily extensible

What is the catch?

* |nference is going to be harder

* More ways to shoot yourself in the foot

Bayesian inference

— Posterior — Likelihood Prior

F [Q ()] Estimate predict values, under posterior on
p(x |y)LLLX sample values, given observe values.

Bayesian inference

p(x|y)=p(ylx)p(x)/p(y)

— Posterior — Likelihood Prior

Example: Biased Coin

y Observed data (flip outcomes)

X Unknown variable (coin bias)

Bayesian inference

} " .
- Aot
= s |
h Y . - - 4y
. -
+ A -
p -
S G : :
A ¢ ot 8 A B L —
o '., . £ '4_‘" ey
& v B e e —
; e ey R N 7 B e R
v oy 3) . v v ";.: $
o 2 TR . » NS
T S TR LR~ ¢ Kot T
oS- - >~ -4 d - : et s 52
s gt S » i 2 Zh
- . 5 o >
e A LN T * » >* ,f{‘:‘ \):
- - g s v 8 |
1“,‘ o7 -~ ; ‘-:v o
[. 3 X
] W = . 3 "
W . B
5 - &)
- Py« » 4 g q .
>
e, s ;
- . : } 5 o ,'
- .J-
h‘ X)""‘: y £ L \). .‘
¥ x R “ & :
.' ¥
» '
A

— Posterior — Likelihood Prior

Example: Biased Coin

p(y|x) Likelihood of outcome given bias

p(x) Prior belief about bias

p(x |y) Posterior belief after seeing data

Bayesian inference

p(x|y)=p(ylx)p(x)/p(y)

— Posterior — Likelihood Prior

Example: Biased Coin

I I l I

0 heads, 0 tails

| | | |
.0 0.2 0.4 0.6 0.8 1.0

X (bias)

Bayesian inference

p(x|y)

— Posterior

=p(y |x)p(x)/p(y)

— Likelihood Prior

Example: Biased Coin

p(x|y)

I I l I

7 heads, 3 tails

Bayesian inference

p(x|y)=p(ylx)p(x)/p(y)

— Posterior — Likelihood Prior

Example: Biased Coin

I | | |
~— 16 heads, 14 tails
>, .
— / \ 7 heads, 3 tails
2 / N
— | y, X e
Q, |0heads,Otails , N
L .4‘{’/'"1’*' | S \"Q
0 0.2 0.4 0.6 0.8 1.0

Bayesian inference

p(x|y)=p(ylx)p(x)/p(y)

— Posterior — Likelihood Prior

Example: Biased Coin

24 heads, 26 tails

16 heads, 14 tails

AN\ .
7 heads, 3 tails

— —— =
- L

- T
f’ -

p(x|y)

4"'
-
-t

Separating models and inference

Modeling Language (Anglican)

(let [b1ias (sample (uniform 0 1))
likelithood (flip bias)]
(observe likelihood true)
(observe likelihood true)
(observe likelihood true)
(predict bias))

Special Forms

1 sample random value x
2 observe condition on value y
3 return value Q(x)

Inference Back End

Estimate distribution over output
values under posterior of sample
values, given observe values.

p(xly)=p(ylx)p(x)/p(y)

* Implements (inference-algorithm-specifc)
sample and observe handlers

* Returns weighted samples

Generative model for Captcha-breaking

Target Image Model for Characters

(defn sample-char []

{:symbol (sample (uniform ascii))
:X (sample (uniform-cont 0.0 1.0))
:y (sample (uniform-cont 0.0 1.0))
:scale (sample (beta 1 2))

:weight (sample (gamma 2 2))
:blur (sample (gamma 1 1))})

Generative model for Captcha-breaking

Target Image Model for Characters

(defquery captcha
[1mage max-chars tol]
(let [[w h] (size 1mage)
;5 sample random characters
num-chars (sample
(uniform-discrete
1 (inc max-chars)))
chars (repeatedly
num-chars sample-char)]
;5 compare rendering to true image
(map (fn Ly z]
(observe (normal z tol) y))
(reduce-dim 1image)
(reduce-dim (render chars w h)))
;3 output captcha text
(map :symbol (sort-by :x chars))))

Generative model for Captcha-breaking

Target Image Model for Characters

(defquery captcha
[1mage max-chars tol]
(let [[w h] (size 1mage)
;5 sample random characters
num-chars (sample
(uniform-discrete
1 (inc max-chars)))
chars (repeatedly
num-chars sample-char)]
;5 compare rendering to true image
(map (fn Ly z]
(observe (normal z tol) y))
(reduce-dim 1image)
(reduce-dim (render chars w h)))
;3 output captcha text
(map :symbol (sort-by :x chars))))

Samples from Program

Deterministic Simulation

(defquery arrange-bumpers []
(let [bumper-positions []

world (create-world bumper-positions)
end-world (simulate-world world)
balls (end-world)

num-balls-in-box (balls-in-box end-world)]

(predict balls)
(predict num-balls-in-box)
(predict bumper-positions)))

What if we want a “world” that puts ~20% of balls in box”

Stochastic Simulation

(defquery arrange-bumpers []
(let [number-of-bumpers (sample (poisson 20))
bumpydist (uniform-continuous 0 10)
bumpxdist (uniform-continuous -5 14)
bumper-positions (repeatedly
number-of-bumpers
i ((sample bumpxdist)
(sample bumpydist)))

Constrained Stochastic Simulation

Other sorts of examples

 Coordination game: cell phone dead. Do we meet at the cafe, or meet at the
pub?

* Alice simulates Bob’s decision process

* ... Which simulates Alice’s decision process ...

* ... Which simulates Bob’s decision process ...

 Mutually recursive functions! Easy to write as functional programming code,
very annoying to write out as an explicit game tree...

How can we perform inference”

* Two special forms are the entire interface between model
code and inference code:

(sample ...) (observe ...)

* Q: what kinds of inference algorithms can we develop and
implement using just this as our interface”

Inference over partial program executions

From the perspective of the inference engine, what happens as a program runs?

+ Sequence of M sample statements {(f;,0,) i=1

« Sequence of N observe statements {(9i7¢iayi) 7];V:1

» Sequence of M sampled values {xj}/j]‘il

« Conditioned on these sampled values the entire

computation Is deterministic
N M

v(x) = p(X,y) = ng(yz\sz) L. fj(xj\ej)«

1=1

Interaction between inference engine and model?

Inference engine
(controller)

el

* Inference engine launches (instances of the) program
 sample and observe “checkpoints” yield control back to engine

Program / model:

(defn sample-geometric [alphal
(if (= (sample (bernoulli alpha)) 1)
1
(+ 1 (sample-geometric p))))

(let [alpha (sample (uniform 0O 1))
k (sample-geometric alpha)]

(observe (poisson k) 15)
alpha)

 Engine updates internal state, and resumes program execution
 Program yields result to inference engine upon termination

Implementing "checkpoints
continuations

How do continuations work”?

((+ (* 2 3) 4))

(x& 2 3 (fn [x] (+& x 4 println)))
|

Second cont.

I ——

First continuation

(defn +& [a b k] (k (+ a b)))
(defn *& [a b k] (k (* a b)))

How do continuations work”?

(defn pythagk

[x v K]
(square& x _— e 2
(fn [xx] ,
(square& vy 49 =Y
(fn Lyv] TTYY = TT + Yy
(+& xx yy = \/TTYY

(fn [xxyy]
(sqrt& xxyy k))))))))

Use In probabillistic program inference

(defquery flip-example [outcome]

(let [p (sample (uniform-continuous O 1))] (let [u (uniform-continuous 0 1)
(observe (flip p) outcome)
(predict p)) p (sample u)

dist (flip p)]
(observe dist outcome)

(predict p))

Use In probabillistic program inference

(defn flip-query& [outcome k1]

(uniform-continuous& 0 1 (let [u (uniform-continuous O 1)
(fn [dist1]
(sample& distl p (sample u)
(fn [p] ((fn [p k2]
(flip& p dist (flip p)]
(fn [dist2]
(observe& dist2 outcome (observe dist outcome)
(fn []
(predict& p k2)))))) (predict p))
p k1))))))

(defn uniform-continuous& [a b k]
(k (uniform-continuous a b)))

(defn flip& [p k]
(k (flip p)))

INnference “Backend”

(defn sample& [dist k]
;5 [ALGORITHM-SPECIFIC IMPLEMENTATION HERE]

;,» Pass the sampled value to the continuation
(k (sample dist)))

(defn observe& [dist value k]
(println "log-weight =" (log-prob dist value))
;; | ALGORITHM-SPECIFIC IMPLEMENTATION HERE]
;5 Call continuation with no arguments

(k))

Pure compiled deterministic computation

start P continue P continue P terminate P

-0 00 @

(k) (k)

"‘Backend”

sample observe terminate

(£.0,k) (9, 9,9, k)

predict

(2, k)

Possible inference algorithms

Some inference engines (“backends”) we are ready to implement:

* Importance sampling / likelihood weighting <«— Easy
e Single-site Metropolis-Hastings (“random DB”) <— Harder

e Sequential Monte Carlo
Conceptually

* Particle MCMC methods (PIMH, CSMC, IPMCMC) <— Easy

e Black-box variational inference

Where does machine
learning come in”

Trends In probabillistic programming

Ore-shot Probabillistic >

Programming

Inference?
Un- and
Repeated Amortized Semi-
p Inference Supervised Deep
Learning
Yes No

Have fully-specified model?

Amortized inference

O

p(x,y) qe(X|y)

¥)

Can we learn this directly?

Inference networks as proposal distributions

@ f \ f \/' / \ .
2@ G £ Ol

N N
ON &
v
@/ @ @ \> @/ wo
_ N/ _ N) _

N
A probabilistic model An inverse model Can we learn how to sample
generates data generates latents from the inverse model?

Learning an importance sampling proposal for a single dataset

Target density 7(x) = p(x|y), approximating family ¢(x|\)

fit A to learn an importance

Single dataset y argmin Dy, (7T| \qA) sampling proposal

A

Inference networks as proposal distributions

@ f) f \/' / \ .
2@ G £ Ol

A
() "
v
@/ @ @ \s @/ wo
- N/ _ N/ -

N
A probabilistic model An inverse model Can we learn how to sample
generates data generates latents from the inverse model?

|[dea: amortize inference by learning a map from data to target
Target density m(x) = p(x|y), approximating family ¢(x|\)

Averagipg over learn a mapping from
all possible datasets:)\ = p(n,y) arbitrary datasets to A

argmin I,) [DKL(WH%(H,Y))]
g

Training inference network on synthetic data

Averaging over
all possible datasets:)\ = (n,y)

argmin [,y [DKL (7l1dg(n,3))]

g
expectation over any data
New objective function, we might observe
upper-level parameters: /DKL(WHq,\
- p(xly)
— [ply) [plxly) 1o dxdy
/ q(x[o(n,y))._
|

~log ¢(x|¢(n,y))] + const.

approximate with samples
from the joint distribution

Tractable gradient!
Can train entirely offline: V,7(n) = E,x.y) [—Vylogq(x|e(n,y))]

Non-conjugate polynomial regression

- Prior F

L
———_
—_——
-
-
-
—
—
-
-
-
| .

Samples from prior

Non-conjugate polynomial regression

- == Prior 1 - == MH posterior [

- =
_——— ——
mu =

Samples from prior Metropolis-Hastings

Non-conjugate polynomial regression

- == NN proposal [- == MH posterior [

I I I | [
/4
®

Samples from proposal Metropolis-Hastings

Non-conjugate polynomial regression

- = = MH posterior

- = = NN-IS posterior [

7’
l

L1 1 1 1 1 |
/
4
/
\\@
\
\
L1 1 1 1 |

After importance weighting Metropolis-Hastings

Non-conjugate polynomial regression

10

- - - MH posterior

10

- == Prior

10

- == NN proposal

10

- = = NN-IS posterior

_15 | | | | 15 | | | | 15 | | | | 15 | | | |
-10 -5 0 5 -10 -5 0 5 -10 -5 0 5 -10 -5 0 5
8]]]] 8]]]] 8]]]] 8]]]]
- - - MH posterior g/ Phion - - - NN proposal - - = NN-IS posterior
6 - 6 - 6 - 0
4 - - 4 - 4 - 4
2 - - 2 - 2 - 2
° ° ° ° [° ° °
= 0L - i e s R R e
5. L o S Y o * | _5._ ~ o °* | _5_ > o o
-4 T T T T
-10 =5 0 5
30]]]]]

20 -

- - - MH posterior

Inference networks for probabilistic programs

Compilation Inference
Training data Test data
{xtm), ytm)} r 1 y
\ Probabilistic program
p(X, Y)
NN architecture L \J
oNe SIS

o) O 0O Compilation artifact
(55 g g g
/ y; ¢ v

Training — Posterior
Dxr, (p(x | y) || p(x[y)
q(x [y; 9))
Expensive / slow Cheap / fast

Input: an inference problem denoted in a probabilistic programming language

Output: a trained inference network (deep neural network “compilation artifact”)

Le TA, Baydin AG, Wood F. Inference Compilation and Universal Probabilistic Programming. AISTATS. 2017.

Amortized inference in higher-order languages?

 Manually programmed "guide” program?
» Intersperse model code and inference

» Requires support over the same set of “addresses” of random
cholices on every execution

e Automatic?

» Use a generic regression model to conditionally generate sequences
of random choices

Generic structured proposal architecture

.

e e ()
—) A t) ¢ f
ampling [~ ~ Coe ~ ~ ~
I ! ! I I
Output
_ ! ! ! I !
q R LSTM > > —> - > —»

Inputﬁ kﬁ L»ﬁ &,ﬁ k,_,ﬁ

; f ; f ;
/CNN\
¢ /
(™) (n) , (n)
J " "™~ p(x,y)

What does this look like for the CAPTCHA example?

sample from the proposal: 6
letters = []
num_letters =(samp1e(Poisson(6)))
for 1 in range(num_letters):
letters.append(sample(Uniform(“a”,..,”z”,“A”,..,”Z”))) proposal:
observe(render(letters), observed_captcha) 4156789
return letters T
Proposal

observation LSTM
embedder time step 1
v t
observation >
embedding
previous sample embedding: 0
address: a_l M
o
instance: 1
: : |
type: UniformDiscrete

What does this look like for the CAPTCHA example?

6 €
sample from the proposal: q
letters = [] T
num_letters = sample(Poisson(6))
for i in range(num_letters):

letters. append((sample(Uni form(“a”,..,”z”,“A”, .., ”Z”))) proposal: l

]

observe(render(letters), observed_captcha) 4156789 q" 'a' "o
return letters T T

Proposal Proposal

layer layer
qeXBge T T

observation LSTM > LSTM
embedder time step 1 time step 2
v T T
observation
— >
embedding I x —>
previous sample embedding: 0 o-»| |
address: a_1l ¥ a_2 |
o o
instance: 1 1
: : _ :
type: UniformDiscrete Uniform _

What does this look like for the CAPTCHA example?

({9) €~
sample from the proposal: q S
letters = [] T T
num_letters = sample(Poisson(6))
for 1 in range(num_letters):
letters. append(@ample(Uni form(“a”,..,”z” ,“A”, .., ”Z”))) proposal: l
- I
observe(render(letters), observed_captcha) q' "' "o gy g
return letters T T
Proposal Proposal
layer

T

observation I LSTM > LSTM
embedder time step 2 time step 3
v T T
observation
—E—— >
embedding i x —>
previous sample embedding: o-»| | “r»| |
address: a_2 | a_2 |
o _
. n
instance: 1 2
type: Uniform a Uniform o

What does this look like for the CAPTCHA example?

¢

sample from the proposal: s” “X”

Tk

letters = []

num_letters = sample(Poisson(6))
for 1 in range(num_letters):

letters.append(@ample(UniForm(“a”,m,”z”,“A”,m,”Z”)jD proposal:

‘T
ng ‘r ng

observe(render(letters), observed_captcha)

IIXII
return letters

Tk

Proposal
layer

Tk

Proposal

l
observation I LSTM > LSTM
embedder time step 3 time step 4
: T ¢
el | B il —
previous sample embedding: “’r»| | “s?p| |>
address: a_2 ; a_2 ;
instance: 2 ; 3 ;
type: Uniform ; Uniform ;

Solving Sudoku with diffusion models

T
5|74
Mlc s ¢

lnll

y &= ". 1.7
1 -
4 ¢
X y

https://plai.cs.ubc.ca/2022/11/16/graphically-structured-diffusion-models/

Writing a good generative
model Is hard

B
{l

pyro.ai < ﬁ’l ml -+

ABOUT INSTALL DOCS EXAMPLES FORUM GITHUB

2

One-shot Probabilistic >

Programming

Un- and

Amortized Semi-
Repeated .
Inference Supervised Deep PY RO
Learning
Yes No

Deep Universal Probabilistic Programming

INSTALL EXAMPLES

Pyro
http://pyro.ai

http://pyro.ai

What kind of a language is Pyro”

* Built on top of Pytorch: based on differentiable programming, and
takes advantage of the existing Python and Pytorch ecosystem

* ldea: define a generative model as a program, and a “inference model”
as a second program

* Assign a “name” to every latent random variable, and make sure that
they line up (be careful if support is unbounded...!)

* Variational Bayes: Optimize the parameters of the “inference model”
so that it approximates the posterior (i.e. by minimizing a KL
divergence)

Generative model for handwritten digits?

* How do you design a generative model for
images”

9

|_earning deep generative moaels

Inference Generative model
(encoder, guide) (decoder)

? = ® Ol m representation - 7
o|© i

Q¢(Zn|Xn) p(Zn) Po (Xn|zn)
Incomprehensible Latent Variable

(e]e]e)
(e]e]e]e)

\/

Kingma & Welling 2014; Rezende et al. 2014

“Interpretable” (digit)

s -0 O
MO By 0o Oy 0o bo G Y 00 Y
AN QA NSNS
ONN O\ N 'WwVwIvw L
NPV wWwhvo U wo
T TITIET>FTIF T

MM MMt 9 v
e BN TR, e i)

O Y AQQUAWOQOQ QOO
ONGON T8 O 0 \n

Disentangled representations

Unexplained
variation
(“nuisance”)

z (handwriting style)

Disentangled representations

Separate interpretable y Generative model: Inference: predict label y
from nuisance variables z predict pixels x from pixels X, and then
. fromyand z predict z from x and y

» v (digit label)

OO 1 A7 5 b7 39

/ &/ A 3 'Y 7 € ¢ / \ / \

> 0 1 2 3 5 7 8 9 \Y

) O] A3 4S5 b D 2 9

¢ 0| 7 3 5 7 & 9

2 L [£ 3 g 7 8§ 9 Il

& O | 23 45617 8 9

Q012246617 1QAQ @ ’@ @- X

€ 0133456 7¢84 _ / _ Y.

5§ 0 (d 346 6 7 8 49

Kingma et al, Semi-supervised learning with deep generative models, NIPS 2014

-rom one adigit to many digits

Generative model

Label

, C/ N
I \? Q\ Pixels

-rom one adigit to many digits

Generative model

Nuisance Pixels

f\ '4 /Count
OO @
@ @

1N\

7 Pixels

Transformation

How do we bulld models?

Inference model Generative model

(recurrent neural network) _ .
Nuisance Pixels

Count
N N/

) G DE
561 0%

hi_1 > . |€ % \ / e \

g Pixels
Label

Transformation

Inference: counting and locating

Inference model
(recurrent neural network)

Count

Transformation

Real-world examples: molecule generation

- - - i 4 N AT N/ RURDE /" reaction eredictor
IIEIEI z EIIEII:I " O0&OM v
| | A u' ST —(0 5
generate reactant bag i
\ reactant | , | ,
\\ ' probability E E ! I" I’l
" - G S
latent space RNN \ \ i

/
Ce" \‘--—’ b SR
~

\~--———-——--—--——————-—’

Recap!

Probabillistic programming languages can make writing probabilistic models, and
doing inference, faster and more efficient

Big challenge: Bayesian inference is, in general, pretty hard. But:

e ... restricting the probabillistic programming language can help keep inference
more tractable

e ... even in unrestricted models, it’'s possible to define algorithms which will still
work (though computational / statistical efficiency is not guaranteed...)

Deep learning can be useful for amortized inference and for model learning

An Introduction to Probabilistic Programming https://arxiv.org/abs/1809.10756

Frank Wood'’s graduate course: https://www.cs.ubc.ca/~fwood/CS532W-539W/

https://arxiv.org/abs/1809.10756
https://www.cs.ubc.ca/~fwood/CS532W-539W/

1T hanks!

