
Brooks Paige
UCL AI Centre
1 Nov 2023

Programs as probabilistic models

Generative models?

Can you write a

program to do this?

Forward models are “easy”

Can you write a program

to solve Sudoku problems?

Can you write a program

to generate Sudoku problems?

1. Programs as probabilistic models 6

recent travel
abroad?

tuberculosis?

smoker?

lung cancer?

either tb. or
lung cancer?

abnormal 
X-ray?

shortness of
breath?

bronchitis?

Figure 1.2: An example Bayesian network, taken from Lauritzen and Spiegelhalter

[1988]. This network represents a hypothetical medical diagnosis system which could

by used to diagnose the hypothetical cause — bronchitis, lung cancer, tuberculosis, or

possible none of the above — for a patient who exhibits shortness of breath. Individual

nodes in this graph represent binary random variables, and the direction of the arrows

denotes the direction of influence. This generative model for shortness of breath can

be used to answer a variety of queries: not just for predicting the cause, but also for

determining which additional test or follow-up question would be most useful in confirming

a diagnosis.

hand, since the generative model clarifies all relationships between observed and

random variables, all modeling assumptions are entirely explicit rather than being

somehow expressed by the presence or absence of specific training data. When

inference in a generative model gives unexpected or undesirable results, this can be

clearly attributed to incorrect modeling assumptions, rather than (say) the need

for more data. Methods which instead look to approximate p(x|y) directly with a

black-box function can be thought of as implicitly performing approximate posterior

inference under some sort of joint distribution — however, this distribution and

its assumptions are completely unknown.

There are numerous additional advantages: the framing of the relationship from

data to latent variables as a posterior distribution means Bayesian methods naturally

additionally characterize the uncertainty in estimates of the latent variables through

the concentration of the posterior. The use of the generative model to provide

structure yields more data-e�cient inference than in equivalent discriminative

modeling settings [Ng and Jordan, 2002], albeit potentially at a cost in predictive

accuracy in the large-data regime. The graphical structure of graphical models

lends itself to easy compositionality of simpler models into larger models. It

Model relationships between many variables

Lauritzen & Spiegelhalter, 1988

Observed

arrows: causal relationships
circles: random variables

Infer

Quantification of uncertainty

Prediction
Task

Motivation: models in machine learning
Data Generative Model Inference

(assumptions)(input) (output)

Gibbs Sampler

Expectation
Maximization

Data Generative Model Inference
(assumptions)(input) (output)

Prediction
Task

Gibbs Sampler

Expectation
Maximization

Motivation: models in machine learning

Machine Learning Software

(Math) (Model-Specific)

Data Generative Model Inference
(assumptions)(input) (output)

Motivation: models in machine learning

Probabilistic Programming System

Modeling
Language

Inference
Back End

Prediction
Task

(Model-Agnostic)(Program)

Intuitive view of probabilistic programming

Programming
̆

Statistics
̆

Probabilistic
Programming

Inference

A probabilistic program

“Probabilistic programs are usual functional or
imperative programs with two added constructs:

(1) the ability to draw values at random from
distributions, and

(2) the ability to condition values of variables in a
program via observations.”

Gordon, Henzinger, Nori, and Rajamani

“Probabilistic programming.” In Proceedings of On The Future of Software Engineering (2014).

Languages and systems

2000

1990

2010

PL

HANSEI

IBAL

Figaro

ML STATS

WinBUGS

JAGS

STAN
LibBiVenture Anglican

Church

Probabilistic C

Infer.NET

webPPL

Blog
Factorie

AI

PRISM KMP

ProbLog

Discrete  
Support

BUGS

Static
Support

Dynamic 
Support

PyMC

R2
Hakaru

ALisp

Gamble

ICL

2020

edward

Pyro
probtorch

Gen Birch

I’m really tired of writing the same inference
code again and again for each new model!

Answer 1:

BUGS STAN Infer.NET Pyro

Why would we do this?

Why are you writing a probabilistic

programming language?

Question:

I have a probabilistic model I can simulate from,
but I have no idea how to condition it on data!

Answer 2:

Language restrictions?

Model class?

Inference?

Wood Group

Algorithm 1 Gaussian unknown mean model in BUGS
model {

x ~ dnorm(a, 1/b)

for (i in 1:N) {

y[i] ~ dnorm(x, 1/c)

}

}

Algorithm 2 Gaussian unknown mean query in Anglican (Eqv. to BUGS model in Alg. 1)

(defquery unknown-mean

[ys a b c]

(let [x (sample (normal a (sqrt b)))

likelihood (normal x (sqrt c))]

(map (fn [y] (observe likelihood y)) ys)

(predict :x x)))

looks a lot like some kind of weird program. In fact, it is, particularly if you think about it
generatively. In fact, Algorithm 1 shows this model written in BUGS language (Plummer,
2003). In this program the variables N, a, b, c, and {yi}

N

i=1 are assumed to have been defined
and bound to values before the model is “executed.”

As an aside note that the same model can be expressed in the family of more expressive
languages including. As an example consider the same model written in Anglican, Alg. ??.

but these both are just declarative denotations of something. In both cases, the BUGS
model and the Anglican query denote a conditional distribution, in this case of x conditioned
on the model structure and the value of observations y1 and y2. As an aside, note that if we
wanted to do prediction we could simply specify another y3 that is conditionally dependent
in the same way on x but not observed.

How we choose to run the program, i.e. to compute the denoted conditional distribution
is a big part of probabilistic programming. Options include source code analysis and pro-
gram transformations, interpretation to a dependency graph then running ‘stock’ samplers
on the same, or treating the program as exactly that at running it, often multiple times, in
such a way so as to arrive at a converging sequence of program runs (again, more on that
later).

We’ll touch very briefly on the former, however, in this paper we’ll largely punt on
it and point out that doing program transformations that, essentially, analytically derive
conditional distributions foremost requires not only an established, formal, and correct
language semantics but also the skills of a programming languages expert. And while doing
this is seems extremely attractive and is intellectually challenging in the extreme, we in
the machine learning community already understand that there are relatively few models in
which such total transformations are possible so we’ll graciously leave this to the discussion
in this paper and let the programming languages community develop and report on these
tools. When they do this will truly automate big parts of everyday statistical inference

8

A Tutorial on Probabilistic Programming

by recognizing that certain programs correspond to closed-form integrals. Note that there
can be transformations of complex models to graphical models in which computationally
e�cient inference can be performed, but we digress. More on this later.

FIXME – Write an example of the program transformation of a the BUGS program by
moving lines up...

For now, let’s examine how one might write an interpreter from a simple language like
BUGS to an actual graphical representation of the model denotation, and, further, how one
might implement a “generic” inference engine for computing the conditional distribution
specified by the model.

To start, every variable name to the left of a ⇠ denotes a random variable – and to
the right a distribution. There is another operator which instantiates another variable
(again on the left) that is a deterministic function of values to its right.

Interpreting this kind of model then involves running a program to, in this case, build
a graphical model (for this model, Fig. 1). Note that in this quite simple example we don’t
have any deterministic variables, but, even in the general setting, these don’t cause trouble
in figuring out a way to interpret the program, just, potentially, how well the conditional
distribution denoted by the program can be characterized.

a b

c
x

y1y2

Figure 1: Graphical model for Gaussian unknown mean model

Now, given such a graphical structure, one can examine it and pattern match to, for
instance, per-vertex Gibbs operators for use in a global Gibbs sampling algorithm. As
this and programs allowed by the BUGS modeling language, describe directed graphical
models (and, in the case of many BUGS/JAGS packages will cause a compilation error
if you attempt to define a model with cycles) then you can compute the Markov blanket
for each node and attempt to pattern match it to an “e�cient” Gibbs operator for such
a node. In this case we might identify the Markov blanket of x as being all the variables
in the model and then, given the type of the variable (available, syntactically, from the
name of the of the random procedure, here dnorm). If each random procedure includes type
information in the form of its domain, a function that evaluates the density or distribution
of it’s output given its arguments, and, perhaps, whether or not it can form a conjugate
relationship with any other distributions, then, pattern matching on the graph can be used
to select amongst a bank of univariate (or, rather, single random variable – which might
not be univariate) samplers that apply to that particular pattern, and, in the case of Gibbs
kernels that require evaluating the probability of the variable at the node (like, for instance,

9

Spiegelhalter et al. "BUGS: Bayesian inference using Gibbs sampling”

x ⇠ N (a, b�1)

yi ⇠ N (x, c�1), i = 1, . . . , N

An example BUGS program

An example BUGS program2.3. Examples 47

data

list(t = c(94.3 , 15.7 , 62.9 , 126, 5.24 ,
31.4 , 1.05 , 1.05 , 2.1 , 10.5) ,

y = c(5, 1, 5, 14, 3, 19, 1, 1, 4, 22),
N = 10)

inits

list(a = 1, b = 1)
model

{
for (i in 1 : N) {

theta[i] ~ dgamma (a, b)
l[i] <- theta [i] * t[i]
y[i] ~ dpois(l[i])

}
a ~ dexp (1)
b ~ dgamma (0.1 , 1.0)

}
Program 2.7: The Pumps example model from BUGS (OpenBugs, 2009).

show a translation to the FOPPL that was returned by an automated
BUGS-to-FOPPL compiler. Note the similarities between these lan-
guages despite the substantial syntactic di�erences. In particular, both
require that the number of loop iterations N = 10 is fixed and finite. In
BUGS the variables whose values are known appear in a separate data
block. The symbol ≥ is used to define random variables, which can be
either latent or observed, depending on whether a value for the random
variable is present. In our FOPPL the distinction between observed
and latent random variables is made explicit through the syntactic
di�erence between sample and observe. A second di�erence is that a
BUGS program can in principle be used to compute a marginal on
any variable in the program, whereas a FOPPL program specifies a
marginal of the full posterior through its return value. As an example,
in this particular translation, we treat ◊i as a nuisance variable, which
is not returned by the program, although we could have used the loop
construct to accumulate a sequence of ◊i values.

These minor di�erences aside, the BUGS language and the FOPPL
essentially define equivalent families of probabilistic programs. An ad-

Loop iterations

are deterministic!

No if statement

(no branching)

tn

zn
w0

w1

w2 N

tn

zn
w0

w1

w2
N

tn

zn
w0

w1

w2

'w

N

Figure 1. A non-conjugate regression model, as (left) a Bayes net representing a generative model for the data {tn}; (middle) with
dependency structure inverted, as a generative model for the latent variables w0, w1, w2; (right) showing the explicit neural network
structure of the learned approximation to the inverse conditional distribution p̃(w0:2|z1:N , t1:N). New datasets {zn, tn}Nn=1 can be input
directly into the joint density estimator 'w to estimate the posterior. Note that the ordering of the latent variables w0:2 used in this
example is chosen arbitrarily; any permutation of the latent variables would not change the overall structure of the inverse model.

tn
N

tn

zn

N

tn

zn

N

tn

zn
w0

N

tn

zn
w0

N

tn

zn
w0

w1

N

tn

zn
w0

w1

N

tn

zn
w0

w1

w2
N

tn

zn
w0

w1

w2
N

Figure 2. buildout

yn

✓n

tn

↵

�

N

yn

✓n
tn

↵

�
N

yn
'✓n ✓n

tn

'↵�

↵

�
N

Figure 3. A hierarchical Bayesian model. (left) A generative model for the data {xn}; (middle) with dependency structure inverted; (right)
showing the two distinct joint neural conditional density estimators. Note in particular the inverse model still partially factorizes across
the latent variables. The learned factor '✓n is replicated N times in the inverse model, allowing re-use of weights, simplifying training.

y1

✓1
t1

↵

�

yN

✓N
tN

↵

�

Figure 4. buildout

Inference Models Language

BUGS

Gibbs 
Sampling

Hamiltonian
Monte Carlo

Expectation
Propagation

STAN

Infer.NET

Finite  
graphical models

Continuous latent 
variables

Factor graphs

Bounded loops;
no branching

Bounded loops; 
no discrete r.v.s

Finite composition
of factors

“I never want to write this inference code again!”

“Inference first” approach to PPLs

Pros: these languages work.

Cons?

Anglican is a Turing-complete probabilistic programming language
embedded in Clojure. 
 
(Disclaimer: I helped work on developing it back when I was at Oxford)

Other similar (and probably more current) projects:

turing.jl (Cambridge), gen (MIT), Birch, PyProb (UBC), webPPL, …

Example: “Anglican”

Wood Group

Algorithm 1 Relating Anglican syntactic constructs to model-based reasoning notation
; closed-over variables form part of ⌧, i.e. "environment" below

; so too does the text of the program

(with-primitive-procedures [theta phi Q]

(defquery example [parameter y] ; parameter 2 ⌧, y 2 y

(let [x (sample (f (theta parameter enviroment))) ; x 2 x

z [x y]] ; z = x [y

(observe (g (phi x parameter enviroment)) y) ; �(x) = g(y|x)f(x)
(predict :z z)

(predict :r (Q z)))) ; Q(z)

; posterior over z
k and Q(zk); z

k = {xk [y} and x
k ⇠ �(x)

(def posterior ((conditional example :method) parameter-value y-value))

(sample posterior)

The following cell defines a namespace, and imports some functions we will need. This
is a Clojure concept somewhat analogous to a class in Java, or a module in Python. For
now, take this as given; we will supply necessary imports at the top of the document for all
the examples.

(ns hello-world

(:require [anglican importance lmh]

[gorilla-plot.core :as plot]

[anglican.stat :as stat])

(:use [anglican core runtime emit

[inference :only [infer collect-by equalize]]

[state :only [get-predicts get-log-weight set-log-weight]]]))

3.1 A quick tour of Clojure

Clojure is a kind of like LISP. This means that parenthesis are used for function application:
the first element in a parenthesized sequence is a function, and the following elements are
its arguments. It can take a few minutes to become accustomed to this sort of prefix
notation. The following code demonstrates a series of standard arithmetic and mathematical
expressions.

;; Add two numbers

(+ 1 1)

;; Subtract: "10 - 3"

(- 10 3)

;; Multiply, divide

(* 2 5)

(/ 10.0 3.3)

8

A Tutorial on Probabilistic Programming

;; Complex arithmetic expressions are built up like so:

;; (10 * (2.1 + 4.3) / 2)

(/ (* 10 (+ 2.1 4.3)) 2)

;; Functions like "log", "exp", and more exist as you would expect:

(exp -2)

(log (+ 1 1))

(sqrt 5)

Clojure is typed and performs type conversion behind the scenes, almost always nicely.
It has types for floating-point numbers, integers, fractions, and booleans. Clojure also has
matrix types, but we don’t show them here, though Anglican supports them.

Comparison operators <, >, =, <=, >= behave as one would expect, and can be used
within an if statement. The if statement takes the form

(if bool? expr-if-true expr-if-false)

That is, an if expression will itself be a list with four elements: the first is if, the
second evaluates to a boolean, and the last two are any arbitrary expressions. Here are a
few examples.

;; outputs true

(< 4 10)

;; outputs 1

(if (> 3 2) 1 -1)

;; outputs 20

(if (<= 3 3) (+ 10 10) 0)

;; outputs 4

(+ (if (< 4 5) 1 2) 3)

A let block is a bit of Clojure which can be used to define variables within a local
scope. A let block takes an initial argument which defines a sequence of bindings, followed
by a sequence of statements.

Bindings are a list in square-brackets [] of name-value pairs. In (let [x 1 y 2] expr),
the expr is evaluated with x set equal to 1, and y equal to 2.

If a let block includes multiple expressions, the return value of the entire block is the
last expression.

;; prints 12

(let [x 10

y 2]

(+ x y))

9

A Tutorial on Probabilistic Programming

;; Complex arithmetic expressions are built up like so:

;; (10 * (2.1 + 4.3) / 2)

(/ (* 10 (+ 2.1 4.3)) 2)

;; Functions like "log", "exp", and more exist as you would expect:

(exp -2)

(log (+ 1 1))

(sqrt 5)

Clojure is typed and performs type conversion behind the scenes, almost always nicely.
It has types for floating-point numbers, integers, fractions, and booleans. Clojure also has
matrix types, but we don’t show them here, though Anglican supports them.

Comparison operators <, >, =, <=, >= behave as one would expect, and can be used
within an if statement. The if statement takes the form

(if bool? expr-if-true expr-if-false)

That is, an if expression will itself be a list with four elements: the first is if, the
second evaluates to a boolean, and the last two are any arbitrary expressions. Here are a
few examples.

;; outputs true

(< 4 10)

;; outputs 1

(if (> 3 2) 1 -1)

;; outputs 20

(if (<= 3 3) (+ 10 10) 0)

;; outputs 4

(+ (if (< 4 5) 1 2) 3)

A let block is a bit of Clojure which can be used to define variables within a local
scope. A let block takes an initial argument which defines a sequence of bindings, followed
by a sequence of statements.

Bindings are a list in square-brackets [] of name-value pairs. In (let [x 1 y 2] expr),
the expr is evaluated with x set equal to 1, and y equal to 2.

If a let block includes multiple expressions, the return value of the entire block is the
last expression.

;; prints 12

(let [x 10

y 2]

(+ x y))

9

• Notation: prefix vs infix

• Branching

Syntax: basically Clojure (similar to LISP)

• Local bindings

Wood Group

;; ALSO prints 12!

(let [x 10

y 2]

(* x 3)

(+ x y))

;; evaluates to 32

((fn [x y] (+ (* x 3) y))

10

2)

;; let is syntactic "sugar" for the same

(let [x 10

y 2]

(+ (* x 3) y))

;; ... and so does this

(let [x 10

y 2

x (* x 3)]

(+ x y))

;; this has a side-effect, printing to the console,

;; which is carried out within the let block

(let [x 10

y 2]

(println "x times 3 =" (* x 3))

(+ x y))

;; there is also the ‘do‘ block, which is like let, but has no bindings:

(do

(println "10 =" 10)

(println "1 + 1 =" (+ 1 1)))

To do anything particularly interesting in Clojure, we will need functions, lists, and
vectors. There are two ways to define a function. The basic way is to use fn, which takes a
list of argument names (in square brackets) and then a sequence of expressions (note that
defn and # also create functions). It actually looks a lot like a let block! However, values
for the arguments are passed in when the function is called. Here’s an example:

;; define a function which takes x, y as inputs, then returns 2x + y + 3

;; then call that function on values x=5 and y=10, and return the result

(let [my-fn (fn [x y] (+ (* 2 x) y 3))]

(my-fn 5 10))

10

Wood Group

;; ALSO prints 12!

(let [x 10

y 2]

(* x 3)

(+ x y))

;; evaluates to 32

((fn [x y] (+ (* x 3) y))

10

2)

;; let is syntactic "sugar" for the same

(let [x 10

y 2]

(+ (* x 3) y))

;; ... and so does this

(let [x 10

y 2

x (* x 3)]

(+ x y))

;; this has a side-effect, printing to the console,

;; which is carried out within the let block

(let [x 10

y 2]

(println "x times 3 =" (* x 3))

(+ x y))

;; there is also the ‘do‘ block, which is like let, but has no bindings:

(do

(println "10 =" 10)

(println "1 + 1 =" (+ 1 1)))

To do anything particularly interesting in Clojure, we will need functions, lists, and
vectors. There are two ways to define a function. The basic way is to use fn, which takes a
list of argument names (in square brackets) and then a sequence of expressions (note that
defn and # also create functions). It actually looks a lot like a let block! However, values
for the arguments are passed in when the function is called. Here’s an example:

;; define a function which takes x, y as inputs, then returns 2x + y + 3

;; then call that function on values x=5 and y=10, and return the result

(let [my-fn (fn [x y] (+ (* 2 x) y 3))]

(my-fn 5 10))

10

• Functions are first class

Functions

Wood Group

(map (fn [x] (* x x))

(list 1 2 3 4))

;; Here’s a different way of writing the above:

(map (fn [x] (pow x 2)) (range 1 5))

;; Apply the function f(x,y) = x + 2y to the

;; x values [1 2 3] and the y values [10 9 8]

;; Produces [21 20 19]

(map (fn [x y] (+ x (* 2 y)))

[1 2 3] ; these are values x1, x2, x3

[10 9 8]) ; these are values y1, y2, y3

The final essential Clojure construct we will want for the exercises is loop ... recur.
This allows us to easily write looping code.

loop specifies initial values for a set of names (similar to a let-block) and then recur

passes new values in when running the next loop iteration. This is best demonstrated by
example.

;; loop from x=1 until x=10, printing each x

(loop [x 1]

(if (<= x 10)

(let [next-x (+ x 1)]

(println x)

(recur next-x))))

;; this code loops from x=10 down to x=0,

;; and builds up a vector y containing the values of 2x.

(loop [x 10

y []]

(if (= x 0)

y

(recur (- x 1)

(conj y (* 2 x)))))

3.2 Anglican basics

Now we are ready to start using Anglican itself.

Anglican introduces a number of random primitives to the language, for example normal.
Calling (normal mu std), with arguments mu and std, creates a distribution object. This
distribution object can then be sampled from (e.g. (sample (normal 0 1)) draws a stan-
dard normal random variate).

It can also be used to compute log probabilities with observe: for example (observe (normal 0 1) 3)

returns the log probability of the value 3 under the distribution (normal 0 1).

12

WOOD GROUP

[10 9 8]) ; these are values y1, y2, y3

;; Reduce recursively applies function,
;; to current result and next list element, e.g.
(reduce + [1 2 3 4])
;; does (+ (+ (+ 0 1) 2) ...
;; and evaluates to 10

;; Reduce recursively applies function,
;; to result and next element, i.e.
(reduce + 0 [1 2 3 4])
;; does (+ (+ (+ 0 1) 2) ...
;; and evaluates to 10

The final essential Clojure construct we will want for the exercises is loop ... recur.
This allows us to easily write looping code.

loop specifies initial values for a set of names (similar to a let-block) and then
recur passes new values in when running the next loop iteration. This is best demon-
strated by example.

;; loop from x=1 until x=10, printing each x
(loop [x 1]

(if (<= x 10)
(let [next-x (+ x 1)]

(println x)
(recur next-x))))

;; this code loops from x=10 down to x=0,
;; and builds up a vector y containing the values of 2x.
(loop [x 10

y []]
(if (= x 0)

y
(recur (- x 1)

(conj y (* 2 x)))))

3.2 Anglican basics

Now we are ready to start using Anglican itself.
Anglican introduces a number of random primitives to the language, for example

normal. Calling (normal mu std), with arguments mu and std, creates a distribution
object. This distribution object can then be sampled from (e.g. (sample (normal 0 1))
draws a standard normal random variate).

14

• map

• reduce

Higher-order functions

Unfortunately, restrictions can be quite limiting!

Simple example: sampling from a geometric distribution, by counting  
number of failures before first success, in independent 
Bernoulli trials

The need for higher-order languagesUnbounded Recursion
(defn geometric
 "generates geometrically distributed values in {0,1,2,...}"
 ([p] (geometric p 0))
 ([p n] (if (sample (flip p))
 n
 (geometric p (+ n 1)))))

0

1

1-pp

1-pp

2

1-pp

Unrestricted Languages:
• “Open-universe”: unbounded numbers of parameters

• Mixed variable types

• Access to existing software libraries

• Easily extensible

What is the catch?
• Inference is going to be harder

• More ways to shoot yourself in the foot

Other way around: language first

Posterior Likelihood Prior

Estimate predict values, under posterior on
sample values, given observe values.Ep(x | y)[Q(x)]'
X

l

wl
P

k wk
Q(x l)

Bayesian inference

Posterior Likelihood Prior

Observed data (flip outcomes)

Unknown variable (coin bias)

Example: Biased Coin

Bayesian inference

Posterior Likelihood Prior

Likelihood of outcome given bias

Prior belief about bias

Example: Biased Coin

Posterior belief after seeing data

Bayesian inference

Posterior Likelihood Prior

Example: Biased Coin

(bias)

Bayesian inference

Posterior Likelihood Prior

Example: Biased Coin

(bias)

Bayesian inference

Posterior Likelihood Prior

Example: Biased Coin

(bias)

Bayesian inference

Posterior Likelihood Prior

Example: Biased Coin

(bias)

Bayesian inference

Modeling Language (Anglican)

1 sample random value x
2 observe condition on value y
3 return value Q(x)

Special Forms

(let [bias (sample (uniform 0 1))
 likelihood (flip bias)]
 (observe likelihood true)
 (observe likelihood true)
 (observe likelihood true)
 (predict bias))

Inference Back End

• Implements (inference-algorithm-specifc)
sample and observe handlers

• Returns weighted samples

Estimate distribution over output
values under posterior of sample
values, given observe values.

Separating models and inference

Generative model for Captcha-breaking
Model for Characters

(defn sample-char []
 {:symbol (sample (uniform ascii))
 :x (sample (uniform-cont 0.0 1.0))
 :y (sample (uniform-cont 0.0 1.0))
 :scale (sample (beta 1 2))
 :weight (sample (gamma 2 2))
 :blur (sample (gamma 1 1))})

Target Image

(defquery captcha
 [image max-chars tol]
 (let [[w h] (size image)
 ;; sample random characters
 num-chars (sample
 (uniform-discrete
 1 (inc max-chars)))
 chars (repeatedly
 num-chars sample-char)]
 ;; compare rendering to true image
 (map (fn [y z]
 (observe (normal z tol) y))
 (reduce-dim image)
 (reduce-dim (render chars w h)))
 ;; output captcha text
 (map :symbol (sort-by :x chars))))

Model for CharactersTarget Image

Samples from Program

Generative model for Captcha-breaking

(defquery captcha
 [image max-chars tol]
 (let [[w h] (size image)
 ;; sample random characters
 num-chars (sample
 (uniform-discrete
 1 (inc max-chars)))
 chars (repeatedly
 num-chars sample-char)]
 ;; compare rendering to true image
 (map (fn [y z]
 (observe (normal z tol) y))
 (reduce-dim image)
 (reduce-dim (render chars w h)))
 ;; output captcha text
 (map :symbol (sort-by :x chars))))

Model for CharactersTarget Image

Samples from Program

Generative model for Captcha-breaking

Deterministic Simulation
(defquery arrange-bumpers []
 (let [bumper-positions []

 ;; code to simulate the world
 world (create-world bumper-positions)
 end-world (simulate-world world)
 balls (:balls end-world)

 ;; how many balls entered the box?
 num-balls-in-box (balls-in-box end-world)]

 (predict :balls balls)
 (predict :num-balls-in-box num-balls-in-box)
 (predict :bumper-positions bumper-positions)))

What if we want a “world” that puts ~20% of balls in box?

Stochastic Simulation
(defquery arrange-bumpers []
 (let [number-of-bumpers (sample (poisson 20))
 bumpydist (uniform-continuous 0 10)
 bumpxdist (uniform-continuous -5 14)
 bumper-positions (repeatedly
 number-of-bumpers
 #(vector (sample bumpxdist)
 (sample bumpydist)))

 ;; code to simulate the world
 world (create-world bumper-positions)
 end-world (simulate-world world)
 balls (:balls end-world)

 ;; how many balls entered the box?
 num-balls-in-box (balls-in-box end-world)]

 (predict :balls balls)
 (predict :num-balls-in-box num-balls-in-box)
 (predict :bumper-positions bumper-positions)))

Constrained Stochastic Simulation
(defquery arrange-bumpers []
 (let [number-of-bumpers (sample (poisson 20))
 bumpydist (uniform-continuous 0 10)
 bumpxdist (uniform-continuous -5 14)
 bumper-positions (repeatedly
 number-of-bumpers
 #(vector (sample bumpxdist)
 (sample bumpydist)))

 ;; code to simulate the world
 world (create-world bumper-positions)
 end-world (simulate-world world)
 balls (:balls end-world)

 ;; how many balls entered the box?
 num-balls-in-box (balls-in-box end-world)

 obs-dist (normal 4 0.1)]

 (observe obs-dist num-balls-in-box)

 (predict :balls balls)
 (predict :num-balls-in-box num-balls-in-box)
 (predict :bumper-positions bumper-positions)))

Other sorts of examples
• Coordination game: cell phone dead. Do we meet at the cafe, or meet at the

pub?

• Alice simulates Bob’s decision process

• … which simulates Alice’s decision process …

• … which simulates Bob’s decision process …

• …

• Mutually recursive functions! Easy to write as functional programming code,
very annoying to write out as an explicit game tree…

• Two special forms are the entire interface between model
code and inference code: 
 
 

• Q: what kinds of inference algorithms can we develop and
implement using just this as our interface?

(observe ...)(sample ...)

How can we perform inference?

• Sequence of M sample statements

• Sequence of N observe statements

• Sequence of M sampled values

• Conditioned on these sampled values the entire
computation is deterministic

A Tutorial on Probabilistic Programming

according to a standard normal distribution by calling (sample (normal 0 1)) and we
could condition on it taking the value 1.1 with (observe (normal 0 1) 1.1). In a single
execution of a probabilistic program, if we encounter a sample statement, we draw a new
random variable; if we encounter an observe statement, we can record the probability of
the value under the supplied distribution.

We can describe this process somewhat more precisely as follows. We suggest a separa-
tion between the deterministic program code P and the randomness introduced by sample

by considering the probabilistic program to be executed in the context of some backend B,
and introduce the concept of a program execution trace which enumerates all random choices
made during the course of executing the program. Crucially, the probabilistic program ex-
ecution is completely deterministic given the value of the trace — that is, given a sequence
of sampled values x1, x2, . . . then the output of the probabilistic program is deterministic.
The backend B interacts with the program P as follows.

• We initialize by beginning execution of the program P.

• When execution of P encounters a sample statement, observe statement, or the end
of the program, it yields control to the backend.

– sample: P passes to B a tuple (f, ✓) consisting of a distribution f and a parameter
vector ✓. The backend samples a value x ⇠ f(·|✓); it then returns control to P
which continues execution, providing this value as the output of sample.

– observe: P passes to B a tuple (g, �, y) consisting of a distribution g, a parameter
vector �, and a observed value y. Control is then returned to P, which continues
execution.

– If P has terminated, it returns a value z, which can be any arbitrary (determin-
istic) function of the program trace.

Suppose after a single execution of a probabilistic program in this manner, we encounter N

observe statements and M sample statements. This yields sequences of tuples {(gi, �i, yi)}Ni=1
corresponding to the observe statements, and {(fj , ✓j)}Mj=1 corresponding to the sample

statements, with the associated sequence of sampled values (i.e. the program execution
trace) {xj}Mj=1. The probability of this program execution trace can be defined, up to an
unknown normalizing constant, as a product of all random choices x and all observed values
y, with

�(x) , p(x,y) =
NY

i=1

gi(yi|�i)
MY

j=1

fj(xj |✓j). (72)

Note that this ordering, as well as the cardinalities M and N , are not necessarily identical
across di↵erent runs of the program.

Obscured by the notation above is the dependency structure induced by the probabilistic
program P. Each parameter vector �i and ✓j are themselves deterministic functions of
(potentially) every previous random choice in the program. So too are gi and fj . Let ni

denote the total number of random values sampled prior to the i
th observe statement and

the bold, subscripted value xj = x1 ⇥ · · · ⇥ xj denote a partial program execution trace

53

A Tutorial on Probabilistic Programming

according to a standard normal distribution by calling (sample (normal 0 1)) and we
could condition on it taking the value 1.1 with (observe (normal 0 1) 1.1). In a single
execution of a probabilistic program, if we encounter a sample statement, we draw a new
random variable; if we encounter an observe statement, we can record the probability of
the value under the supplied distribution.

We can describe this process somewhat more precisely as follows. We suggest a separa-
tion between the deterministic program code P and the randomness introduced by sample

by considering the probabilistic program to be executed in the context of some backend B,
and introduce the concept of a program execution trace which enumerates all random choices
made during the course of executing the program. Crucially, the probabilistic program ex-
ecution is completely deterministic given the value of the trace — that is, given a sequence
of sampled values x1, x2, . . . then the output of the probabilistic program is deterministic.
The backend B interacts with the program P as follows.

• We initialize by beginning execution of the program P.

• When execution of P encounters a sample statement, observe statement, or the end
of the program, it yields control to the backend.

– sample: P passes to B a tuple (f, ✓) consisting of a distribution f and a parameter
vector ✓. The backend samples a value x ⇠ f(·|✓); it then returns control to P
which continues execution, providing this value as the output of sample.

– observe: P passes to B a tuple (g, �, y) consisting of a distribution g, a parameter
vector �, and a observed value y. Control is then returned to P, which continues
execution.

– If P has terminated, it returns a value z, which can be any arbitrary (determin-
istic) function of the program trace.

Suppose after a single execution of a probabilistic program in this manner, we encounter N

observe statements and M sample statements. This yields sequences of tuples {(gi, �i, yi)}Ni=1
corresponding to the observe statements, and {(fj , ✓j)}Mj=1 corresponding to the sample

statements, with the associated sequence of sampled values (i.e. the program execution
trace) {xj}Mj=1. The probability of this program execution trace can be defined, up to an
unknown normalizing constant, as a product of all random choices x and all observed values
y, with

�(x) , p(x,y) =
NY

i=1

gi(yi|�i)
MY

j=1

fj(xj |✓j). (72)

Note that this ordering, as well as the cardinalities M and N , are not necessarily identical
across di↵erent runs of the program.

Obscured by the notation above is the dependency structure induced by the probabilistic
program P. Each parameter vector �i and ✓j are themselves deterministic functions of
(potentially) every previous random choice in the program. So too are gi and fj . Let ni

denote the total number of random values sampled prior to the i
th observe statement and

the bold, subscripted value xj = x1 ⇥ · · · ⇥ xj denote a partial program execution trace

53

A Tutorial on Probabilistic Programming

according to a standard normal distribution by calling (sample (normal 0 1)) and we
could condition on it taking the value 1.1 with (observe (normal 0 1) 1.1). In a single
execution of a probabilistic program, if we encounter a sample statement, we draw a new
random variable; if we encounter an observe statement, we can record the probability of
the value under the supplied distribution.

We can describe this process somewhat more precisely as follows. We suggest a separa-
tion between the deterministic program code P and the randomness introduced by sample

by considering the probabilistic program to be executed in the context of some backend B,
and introduce the concept of a program execution trace which enumerates all random choices
made during the course of executing the program. Crucially, the probabilistic program ex-
ecution is completely deterministic given the value of the trace — that is, given a sequence
of sampled values x1, x2, . . . then the output of the probabilistic program is deterministic.
The backend B interacts with the program P as follows.

• We initialize by beginning execution of the program P.

• When execution of P encounters a sample statement, observe statement, or the end
of the program, it yields control to the backend.

– sample: P passes to B a tuple (f, ✓) consisting of a distribution f and a parameter
vector ✓. The backend samples a value x ⇠ f(·|✓); it then returns control to P
which continues execution, providing this value as the output of sample.

– observe: P passes to B a tuple (g, �, y) consisting of a distribution g, a parameter
vector �, and a observed value y. Control is then returned to P, which continues
execution.

– If P has terminated, it returns a value z, which can be any arbitrary (determin-
istic) function of the program trace.

Suppose after a single execution of a probabilistic program in this manner, we encounter N

observe statements and M sample statements. This yields sequences of tuples {(gi, �i, yi)}Ni=1
corresponding to the observe statements, and {(fj , ✓j)}Mj=1 corresponding to the sample

statements, with the associated sequence of sampled values (i.e. the program execution
trace) {xj}Mj=1. The probability of this program execution trace can be defined, up to an
unknown normalizing constant, as a product of all random choices x and all observed values
y, with

�(x) , p(x,y) =
NY

i=1

gi(yi|�i)
MY

j=1

fj(xj |✓j). (72)

Note that this ordering, as well as the cardinalities M and N , are not necessarily identical
across di↵erent runs of the program.

Obscured by the notation above is the dependency structure induced by the probabilistic
program P. Each parameter vector �i and ✓j are themselves deterministic functions of
(potentially) every previous random choice in the program. So too are gi and fj . Let ni

denote the total number of random values sampled prior to the i
th observe statement and

the bold, subscripted value xj = x1 ⇥ · · · ⇥ xj denote a partial program execution trace

53

Inference over partial program executions
From the perspective of the inference engine, what happens as a program runs?

Interaction between inference engine and model?

104

designed to ensure that programs always evaluate a bounded set of
sample and observe expressions. Because of this, programs that are
written in the FOPPL can be safely eagerly evaluated. It is very easy
to create a language in which this is no longer the case. For example, if
we simply allow function definitions to be recursive, then we can now
write programs such as this one

(defn sample-geometric [alpha]
(if (= (sample (bernoulli alpha)) 1)

1
(+ 1 (sample-geometric p))))

(let [alpha (sample (uniform 0 1))
k (sample-geometric alpha)]

(observe (poisson k) 15)
alpha)

In this program, the recursive function sample-geometric defines the
functional programming equivalent of a while loop. At each iteration,
the function samples from a Bernoulli distribution, returning 1 when
the sampled value is 1 and recursively calling itself when the value is 0.
Eager evaluation of if expressions would result in an infinite recursion
for this program, so the compilation strategy that we developed in
the previous chapter would clearly fail here. This makes sense, since
the expression (sample (bernoulli p)) can in principle be evaluated
an unbounded number of times, implying that the number of random
variables in the graph is unbounded as well.

Even though we can no longer compile the program above to a
static graph, it turns out that we can still perform inference in order
to characterize the posterior on the program output. To do so, we
rely on the fact that we can always simply run a program (using lazy
evaluation for if expressions) to generate a sample from the prior. In
other words, even though we might not be able to characterize the
support of a probabilistic program, we can still generate a sample
that, by construction, is guaranteed to be part of the support. If we
additionally keep track of the probabilities associated with each of
the observe expressions that is evaluated in a program, then we can
implement sampling algorithms that either evaluate an Metropolis-

Program / model:Inference engine
(controller)

• Inference engine launches (instances of the) program

• sample and observe “checkpoints” yield control back to engine

• Engine updates internal state, and resumes program execution

• Program yields result to inference engine upon termination

Implementing “checkpoints”:

continuations

Example CPS Transformation

First continuation

Second cont.

A TUTORIAL ON PROBABILISTIC PROGRAMMING

10.5.1 EXAMPLES OF CPS TRANSFORMATION

Here we demonstrate continuation passing style by example, showing a few simple Clo-
jure functions as transformed into CPS. We will denote CPS-transformed functions by
ending their names with &; the last argument c will explicitly represent the continuation.

;; CPS-transformed "primitives"
(defn +& [a b k] (k (+ a b)))
(defn *& [a b k] (k (* a b)))

;; example:
(+& 2 4 println)
(*& 3 5 println)

Running this program prints out 6 and 15. Each of the new functions +& and *& take
an additional final argument which represents “what to do next”. Here, we simply print
the output by passing println. When we have composition of functions, then writing
the computation using CPS-transformed functions makes clear the actual order of ex-
ecution, from “inside” to “outside”. Suppose we try to compute a sum of a product and
another number, i.e. evaluate equations of the form ab+ c.

;; Standard Clojure:
(println (+ (* 2 3) 4))

;; With CPS-transformed primitives:
(*& 2 3 (fn [x] (+& x 4 println)))

;; Here’s probably the clearest way to write this:
(defn add-to-product&

"compute a*b + c"
[a b c k]
(*& a b

(fn [tmp] (+& tmp c k))))

(add-to-product& 2 3 4 println)

The add-to-product function first computes the product of a and b (the innermost
computation), and then calls a continuation which adds c to the result, which then calls
the outermost continuation. Note that in this example we don’t necessarily have to nest
the continuation; we could define the continuation ahead of time, with for example using
an auxiliary function.

;; Defining an explicit function for the continuation:
(let [add-four-to-result (fn [x k] (+& x 4 k))]

(*& 2 3 (fn [x] (add-four-to-result x println))))

75

A TUTORIAL ON PROBABILISTIC PROGRAMMING

10.5.1 EXAMPLES OF CPS TRANSFORMATION

Here we demonstrate continuation passing style by example, showing a few simple Clo-
jure functions as transformed into CPS. We will denote CPS-transformed functions by
ending their names with &; the last argument c will explicitly represent the continuation.

;; CPS-transformed "primitives"
(defn +& [a b k] (k (+ a b)))
(defn *& [a b k] (k (* a b)))

;; example:
(+& 2 4 println)
(*& 3 5 println)

Running this program prints out 6 and 15. Each of the new functions +& and *& take
an additional final argument which represents “what to do next”. Here, we simply print
the output by passing println. When we have composition of functions, then writing
the computation using CPS-transformed functions makes clear the actual order of ex-
ecution, from “inside” to “outside”. Suppose we try to compute a sum of a product and
another number, i.e. evaluate equations of the form ab+ c.

;; Standard Clojure:
(println (+ (* 2 3) 4))

;; CPS transformed:
(*& 2 3 (fn [x] (+& x 4 println)))

;; Here’s probably the clearest way to write this:
(defn add-to-product&

"compute a*b + c"
[a b c k]
(*& a b

(fn [tmp] (+& tmp c k))))

(add-to-product& 2 3 4 println)

The add-to-product function first computes the product of a and b (the innermost
computation), and then calls a continuation which adds c to the result, which then calls
the outermost continuation. Note that in this example we don’t necessarily have to nest
the continuation; we could define the continuation ahead of time, with for example using
an auxiliary function.

;; Defining an explicit function for the continuation:
(let [add-four-to-result (fn [x k] (+& x 4 k))]

(*& 2 3 (fn [x] (add-four-to-result x println))))

75

How do continuations work?

How do continuations work?CPS Explicitly Linearizes Execution

• Compiling to a pure language with lexical scoping ensures

A. variables needed in subsequent computation are bound in the environment

B. can’t be modified by multiple calls to the continuation function

WOOD GROUP

Let’s try a new example: the pythagorean theorem, which we use to compute the hy-
potenuse of right triangle.

;; Define sqrt& as a new "primitive" function
(defn sqrt& [a k] (k (Math/sqrt a)))

;; Define square& using *&
(defn square& [a k] (*& a a k))

;; For example:
(square& 5 println) ; 25
(sqrt& 9 println) ; 3

(defn pythag&
"compute sqrt(x^2 + y^2)"
[x y k]
(square& x

(fn [xx]
(square& y

(fn [yy]
(+& xx yy

(fn [xxyy]
(sqrt& xxyy k))))))))

;; Test it:
(pythag& 3 4 println) ; 5
(pythag& 5 12 println) ; 13

Note that the continuations we define within the pythag& function have state, in their
closure! We cannot write, for example, the function (fn [yy k] (+& xx yy k)) since
it requires a value xx, a variable which is available due to being in scope at the time the
function is called, rather than passed in as an argument. Immutability in Clojure/Angli-
can allows us to “get away with" calling these continuation functions repeatedly, anyway,
since no subsequent executions of the program will modify these variables.

10.5.2 AN EXAMPLE OF A PROBABILISTIC MODEL

(defquery flip-example [outcome]
(let [p (sample (uniform-continuous 0 1))]

(observe (flip p) outcome)
(predict :p p))

(flip-example true)

76

xx = x2

yy = y2

xxyy = xx+ yy

· = p
xxyy

Anglican Programs

WOOD GROUP

"compute sqrt(x^2 + y^2)"
[x y k]
(square& x

(fn [xx]
(square& y

(fn [yy]
(+& xx yy

(fn [xxyy]
(sqrt& xxyy k))))))))

;; Test it:
(pythag& 3 4 println) ; 5
(pythag& 5 12 println) ; 13

Note that the continuations we define within the pythag& function have state, in their
closure! We cannot write, for example, the function (fn [yy k] (+& xx yy k)) since
it requires a value xx, a variable which is available due to being in scope at the time the
function is called, rather than passed in as an argument. Immutability in Clojure/Angli-
can allows us to “get away with" calling these continuation functions repeatedly, anyway,
since no subsequent executions of the program will modify these variables.

10.5.2 AN EXAMPLE OF A PROBABILISTIC MODEL

(defquery flip-example [outcome]
(let [p (sample (uniform-continuous 0 1))]

(observe (flip p) outcome)
(predict :p p))

(flip-example true)

Consider a very simple program which samples a probability p uniformly on (0, 1)
and then observe true from a single Bernoulli trial. This model, in traditional Clo-
jure/Anglican syntax, would look like

(defn flip-example [outcome]
(let [p (sample (uniform-continuous 0 1))]

(observe (flip p) outcome)
(predict :p p))

(flip-example true)

To give an idea of how this program might look once CPS-transformed, we implement
a “dummy" inference backend.

74

A TUTORIAL ON PROBABILISTIC PROGRAMMING

"compute sqrt(x^2 + y^2)"
[x y k]
(square& x

(fn [xx]
(square& y

(fn [yy]
(+& xx yy

(fn [xxyy]
(sqrt& xxyy k))))))))

;; Test it:
(pythag& 3 4 println) ; 5
(pythag& 5 12 println) ; 13

Note that the continuations we define within the pythag& function have state, in their
closure! We cannot write, for example, the function (fn [yy k] (+& xx yy k)) since
it requires a value xx, a variable which is available due to being in scope at the time the
function is called, rather than passed in as an argument. Immutability in Clojure/Angli-
can allows us to “get away with" calling these continuation functions repeatedly, anyway,
since no subsequent executions of the program will modify these variables.

10.5.2 AN EXAMPLE OF A PROBABILISTIC MODEL

(defquery flip-example [outcome]
(let [p (sample (uniform-continuous 0 1))]

(observe (flip p) outcome)
(predict :p p))

(flip-example true)

(let [u (uniform-continuous 0 1)

p (sample u)

dist (flip p)]

(observe dist outcome)

(predict :p p))

Consider a very simple program which samples a probability p uniformly on (0, 1)
and then observe true from a single Bernoulli trial. This model, in traditional Clo-
jure/Anglican syntax, would look like

83

Anglican Anglican “linearized”

Use in probabilistic program inference

Are “Compiled” to Native CPS-Clojure
WOOD GROUP

(defn flip-query& [outcome k1]
(uniform-continuous& 0 1

(fn [dist1]
(sample& dist1

(fn [p] ((fn [p k2]
(flip& p

(fn [dist2]
(observe& dist2 outcome

(fn []
(predict& :p p k2))))))

p k1))))))

(flip-query& true terminate)

(defn weighted-sample [query&]
(init-backend!)
(query& terminate)
[(:predicts @backend) (:log-weight @backend)])

(weighted-sample flip-query-true&)

10.6

And then talk about implementation, from transformation compilation to prob.-c to An-
glican style with brooks’ prob.-c and how to get "the same" via CPS transformation
and compilation to a pure functional language – this works because of datastructures.
mention massive parallelism automatically.

We can show Stanford’s stuff on C3 as a family that decends from trans. comp. to
our family of inference methods that decend, roughly, from SMC.

We should talk about why functional datastructures are required for valid statistical
reasoning. And why various languages have continuations natively and why some don’t
and what that means.

Pure functional data structures.
composibility (tuan anh’s request hmm, Noah style models),
why semantics matters and point out that higher order probabilsitic langauges dont’

have defined semantics
program transformations (by example) and hakuru as something that could arise

(advanced)

11. Advanced Applications
FW

Hit on Picture and perception.

80

A TUTORIAL ON PROBABILISTIC PROGRAMMING

"compute sqrt(x^2 + y^2)"
[x y k]
(square& x

(fn [xx]
(square& y

(fn [yy]
(+& xx yy

(fn [xxyy]
(sqrt& xxyy k))))))))

;; Test it:
(pythag& 3 4 println) ; 5
(pythag& 5 12 println) ; 13

Note that the continuations we define within the pythag& function have state, in their
closure! We cannot write, for example, the function (fn [yy k] (+& xx yy k)) since
it requires a value xx, a variable which is available due to being in scope at the time the
function is called, rather than passed in as an argument. Immutability in Clojure/Angli-
can allows us to “get away with" calling these continuation functions repeatedly, anyway,
since no subsequent executions of the program will modify these variables.

10.5.2 AN EXAMPLE OF A PROBABILISTIC MODEL

(defquery flip-example [outcome]
(let [p (sample (uniform-continuous 0 1))]

(observe (flip p) outcome)
(predict :p p))

(flip-example true)

(let [u (uniform-continuous 0 1)

p (sample u)

dist (flip p)]

(observe dist outcome)

(predict :p p))

Consider a very simple program which samples a probability p uniformly on (0, 1)
and then observe true from a single Bernoulli trial. This model, in traditional Clo-
jure/Anglican syntax, would look like

83

Clojure Anglican “linearized”

A TUTORIAL ON PROBABILISTIC PROGRAMMING

(defn flip-example [outcome]
(let [p (sample (uniform-continuous 0 1))]

(observe (flip p) outcome)
(predict :p p))

(flip-example true)

To give an idea of how this program might look once CPS-transformed, we implement
a very simple likelihood weighting inference backend.

;; CPS-ed distribution constructors
(defn uniform-continuous& [a b k]

(k (uniform-continuous a b)))

(defn flip& [p k]
(k (flip p)))

;; Implement a "backend"
(defn sample& [dist k]

;; [ALGORITHM-SPECIFIC IMPLEMENTATION HERE]
;; Pass the sampled value to the continuation
(k (sample dist)))

(defn observe& [dist value k]
(println "log-weight =" (observe dist value))
;; [ALGORITHM-SPECIFIC IMPLEMENTATION HERE]
;; Call continuation with no arguments
(k))

(defn predict& [label value k]
;; [ALGORITHM-SPECIFIC IMPLEMENTATION HERE]
(k label value))

To CPS transform the program itself, we first perform a “desugaring” step, replacing the
let block with a function call.

;; Before CPS transformation, desugar by removing ‘let‘ block
(defn flip-example-desugared [outcome]

((fn [p]
(observe (flip p) outcome)
(predict :p p))

(sample (uniform-continuous 0 1))))

;; This is exactly the same as ‘flip-example‘ above

85

Use in probabilistic program inference

Inference “Backend”

WOOD GROUP

(defn flip-example [outcome]
(let [p (sample (uniform-continuous 0 1))]

(observe (flip p) outcome)
(predict :p p))

(flip-example true)

To give an idea of how this program might look once CPS-transformed, we implement
a very simple likelihood weighting inference backend.

;; CPS-ed distribution constructors
(defn uniform-continuous& [a b k]

(k (uniform-continuous a b)))

(defn flip& [p k]
(k (flip p)))

;; Implement a "backend"
(defn sample& [dist k]

;; [ALGORITHM-SPECIFIC IMPLEMENTATION HERE]
;; Pass the sampled value to the continuation
(k (sample dist)))

(defn observe& [dist value k]
(println "log-weight =" (observe dist value))
;; [ALGORITHM-SPECIFIC IMPLEMENTATION HERE]
;; Call continuation with no arguments
(k))

(defn predict& [label value k]
;; [ALGORITHM-SPECIFIC IMPLEMENTATION HERE]
(k label value))

To CPS transform the program itself, we first perform a “desugaring” step, replacing the
let block with a function call.

;; Before CPS transformation, desugar by removing ‘let‘ block
(defn flip-example-desugared [outcome]

((fn [p]
(observe (flip p) outcome)
(predict :p p))

(sample (uniform-continuous 0 1))))

;; This is exactly the same as ‘flip-example‘ above

84

log-prob

Common Framework

“Backend”

Pure compiled deterministic computation

Pstart Pcontinue Pcontinue terminate

sample

(f, ✓, k)

WOOD GROUP

• We initialize by beginning execution of the program P .

• When execution of P encounters a sample statement, observe statement, or the
end of the program, it yields control to the backend.

– sample: P passes to B a tuple (f, ✓) consisting of a distribution f and a
parameter vector ✓. The backend samples a value x ⇠ f(·|✓); it then returns
control to P which continues execution, providing this value as the output of
sample.

– observe: P passes to B a tuple (g,�, y) consisting of a distribution g, a
parameter vector �, and a observed value y. Control is then returned to P ,
which continues execution.

– If P has terminated, it returns a value z, which can be any arbitrary (deter-
ministic) function of the program trace.

Importance Sampling

• For k = 1 . . .1

– Initialize w 1

– Execute program P .

– While executing P if a sample, observe, or the end of the program is
reached do:

⇤ sample: P passes to us a continuation k and a tuple (f, ✓) consisting of
a distribution f and a parameter vector ✓. We sample a value x ⇠ f(·|✓)
then call (k x) which continues execution of P provided the value.
⇤ observe: P passes to us a continuation k and a tuple (g,�, y) consist-

ing of a distribution g, a parameter vector �, and a observed value y.
We compute w wg(y|�) and call (k).
⇤ If P terminates, it passes to us a value z. We “output” z, w.

64

observe

(g,�, y, k)

WOOD GROUP

• We initialize by beginning execution of the program P .

• When execution of P encounters a sample statement, observe statement, or the
end of the program, it yields control to the backend.

– sample: P passes to B a tuple (f, ✓) consisting of a distribution f and a
parameter vector ✓. The backend samples a value x ⇠ f(·|✓); it then returns
control to P which continues execution, providing this value as the output of
sample.

– observe: P passes to B a tuple (g,�, y) consisting of a distribution g, a
parameter vector �, and a observed value y. Control is then returned to P ,
which continues execution.

– If P has terminated, it returns a value z, which can be any arbitrary (deter-
ministic) function of the program trace.

Importance Sampling

• For k = 1 . . .1

– Initialize w 1

– Execute program P .

– While executing P if a sample, observe, or the end of the program is
reached do:

⇤ sample: P passes to us a continuation k and a tuple (f, ✓) consisting of
a distribution f and a parameter vector ✓. We sample a value x ⇠ f(·|✓)
then call (k x) which continues execution of P provided the value.
⇤ observe: P passes to us a continuation k and a tuple (g,�, y) consist-

ing of a distribution g, a parameter vector �, and a observed value y.
We compute w wg(y|�) and call (k).
⇤ If P terminates, it passes to us a value z. We “output” z, w.

64

predict

WOOD GROUP

• We initialize by beginning execution of the program P .

• When execution of P encounters a sample statement, observe statement, or the
end of the program, it yields control to the backend.

– sample: P passes to B a tuple (f, ✓) consisting of a distribution f and a
parameter vector ✓. The backend samples a value x ⇠ f(·|✓); it then returns
control to P which continues execution, providing this value as the output of
sample.

– observe: P passes to B a tuple (g,�, y) consisting of a distribution g, a
parameter vector �, and a observed value y. Control is then returned to P ,
which continues execution.

– If P has terminated, it returns a value z, which can be any arbitrary (deter-
ministic) function of the program trace.

Importance Sampling

• For k = 1 . . .1

– Initialize w 1

– Execute program P .

– While executing P if a sample, observe, or the end of the program is
reached do:

⇤ sample: P passes to us a continuation k and a tuple (f, ✓) consisting of
a distribution f and a parameter vector ✓. We sample a value x ⇠ f(·|✓)
then call (k x) which continues execution of P provided the value.
⇤ observe: P passes to us a continuation k and a tuple (g,�, y) consist-

ing of a distribution g, a parameter vector �, and a observed value y.
We compute w wg(y|�) and call (k).
⇤ If P terminates, it passes to us a value z. We “output” z, w.

64

(z, k)
terminate

P

• Importance sampling / likelihood weighting

• Single-site Metropolis-Hastings (“random DB”)

• Sequential Monte Carlo

• Particle MCMC methods (PIMH, CSMC, IPMCMC)

• Black-box variational inference

Some inference engines (“backends”) we are ready to implement:

Possible inference algorithms

Easy

Conceptually
 Easy

Harder

Where does machine
learning come in?

Trends in probabilistic programmingTrend In Probabilistic Programming

Probabilistic
Programming ?

Amortized
Inference

Un- and
Semi-

Supervised Deep
Learning

Have fully-specified model?

Inference?

Yes No

One-shot

Repeated

Proposal : Zoubin diagram?

Amortized inference

Amortized Inference

 8

x

y

x

y

qφ(xjy)p(x;y)

Can we learn this directly?

Learning an importance sampling proposal for a single dataset

approximating family

yn

�n

tn

↵

�

N

yn

�n

tn

↵

�
N

yn
'�n �n

tn

'↵�

↵

�
N

Figure 2: a hierarchical Bayesian model. (left) A generative model for the data {xn};
(middle) with dependency structure inverted; (right) showing neural conditional density
estimators. Each yn ⇠ Poisson(�ntn), with �n ⇠ Gamma(↵,�) and gamma priors on ↵,�.
The learned factor '�n is replicated N times in the inverse model, allowing us to re-use the
weights.

p̃(x|y) =
NY

i=1

p̃(xi|fpa(xi))

The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both
in the context of population Monte Carlo (PMC) [3] and sequential Monte Carlo [4, 5, 9],
proposes a parametric family q(x|�), where � is a free parameter, and uses the reverse
Kullback-Leibler (KL) divergence DKL(⇡||q�) as an objective function, choosing � to mini-
mize

argmin
�

DKL(q�||⇡) 6= ⇡(x) q(x|�) (3)

DKL(⇡||q�) =
Z

⇡(x) log


⇡(x)

q(x|�)

�
dx. (4)

This KL divergence between the true posterior distribution p(x|y) and proposal distribution
q(x|�) is also known as the relative entropy criterion, and is a preferred objective function
in situations in which the estimation goal construct a high-quality weighted sample repre-
sentation, rather than to minimize the variance of a particular expectation [4].

In an amortized inference setting, instead of learning � explicitly for a fixed value of y,
we learn a mapping from y to �. More explicitly, if y 2 Y and � 2 #, then learning an
explicit mapping ' : Y ! # allows performing approximate inference for p(x|y) with only
the computational complexity of evaluating the deterministic function '. The tradeo↵ is
that the training of ' itself may be quite involved.

We thus generalize the adaptive importance sampling algorithms by learning a family of
distributions q(x|y), parameterized by the observed data y. Suppose that � = '(⌘,y),
where the function ' is parameterized by a set of higher-level parameters ⌘. We would like
a choice of ⌘ which performs well across all datasets y. We can frame this as minimizing
the expected value of Eq. 4 under p(y), suggesting an objective function J (⌘) defined as

J (⌘) =

Z
DKL(⇡||q�)p(y)dy (5)

=

Z
p(y)

Z
p(x|y) log


p(x|y)

q(x|'(⌘,y))

�
dxdy (6)

= Ep(x,y) [� log q(x|'(⌘,y))] + const. (7)

which has a gradient r⌘J (⌘) = Ep(x,y) [�r⌘ log q(x|'(⌘,y))] .

Notice that these expectations are with respect to the tractable joint distribution p(x,y).
We can thus fit ⌘ by stochastic gradient descent, estimating the expectation of the gradient
r⌘J (⌘) by sampling synthetic full-data training examples {x,y} from the original model.
This procedure can be performed entirely o✏ine — we require only to be able to sample from
the joint distribution p(x,y) to generate candidate data points (e↵ectively providing infinite
training data). In any directed graphical model this can be achieved by ancestral sampling,

3

Target density ,

yn

�n

tn

↵

�

N

yn

�n

tn

↵

�
N

yn
'�n �n

tn

'↵�

↵

�
N

Figure 2: a hierarchical Bayesian model. (left) A generative model for the data {xn};
(middle) with dependency structure inverted; (right) showing neural conditional density
estimators. Each yn ⇠ Poisson(�ntn), with �n ⇠ Gamma(↵,�) and gamma priors on ↵,�.
The learned factor '�n is replicated N times in the inverse model, allowing us to re-use the
weights.

p̃(x|y) =
NY

i=1

p̃(xi|fpa(xi))

The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both
in the context of population Monte Carlo (PMC) [3] and sequential Monte Carlo [4, 5, 9],
proposes a parametric family q(x|�), where � is a free parameter, and uses the reverse
Kullback-Leibler (KL) divergence DKL(⇡||q�) as an objective function, choosing � to mini-
mize

argmin
�

DKL(q�||⇡) 6= ⇡(x) = p(x|y) q(x|�) (3)

argmin
�

DKL(⇡||q�) =
Z

⇡(x) log


⇡(x)

q(x|�)

�
dx. (4)

argmin
⌘

Ep(y)

⇥
DKL(⇡||q'(⌘,y))

⇤
(5)

This KL divergence between the true posterior distribution p(x|y) and proposal distribution
q(x|�) is also known as the relative entropy criterion, and is a preferred objective function
in situations in which the estimation goal construct a high-quality weighted sample repre-
sentation, rather than to minimize the variance of a particular expectation [4].

In an amortized inference setting, instead of learning � explicitly for a fixed value of y,
we learn a mapping from y to �. More explicitly, if y 2 Y and � 2 #, then learning an
explicit mapping ' : Y ! # allows performing approximate inference for p(x|y) with only
the computational complexity of evaluating the deterministic function '. The tradeo↵ is
that the training of ' itself may be quite involved.

We thus generalize the adaptive importance sampling algorithms by learning a family of
distributions q(x|y), parameterized by the observed data y. Suppose that � = '(⌘,y),
where the function ' is parameterized by a set of higher-level parameters ⌘. We would like
a choice of ⌘ which performs well across all datasets y. We can frame this as minimizing
the expected value of Eq. 5 under p(y), suggesting an objective function J (⌘) defined as

J (⌘) =

Z
DKL(⇡||q�)p(y)dy (6)

=

Z
p(y)

Z
p(x|y) log


p(x|y)

q(x|'(⌘,y))

�
dxdy (7)

= Ep(x,y) [� log q(x|'(⌘,y))] + const. (8)

which has a gradient r⌘J (⌘) = Ep(x,y) [�r⌘ log q(x|'(⌘,y))] .

Notice that these expectations are with respect to the tractable joint distribution p(x,y).
We can thus fit ⌘ by stochastic gradient descent, estimating the expectation of the gradient
r⌘J (⌘) by sampling synthetic full-data training examples {x,y} from the original model.
This procedure can be performed entirely o✏ine — we require only to be able to sample from

3

yn

�n

tn

↵

�

N

yn

�n

tn

↵

�
N

yn
'�n �n

tn

'↵�

↵

�
N

Figure 2: a hierarchical Bayesian model. (left) A generative model for the data {xn};
(middle) with dependency structure inverted; (right) showing neural conditional density
estimators. Each yn ⇠ Poisson(�ntn), with �n ⇠ Gamma(↵,�) and gamma priors on ↵,�.
The learned factor '�n is replicated N times in the inverse model, allowing us to re-use the
weights.

p̃(x|y) =
NY

i=1

p̃(xi|fpa(xi))

The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both
in the context of population Monte Carlo (PMC) [3] and sequential Monte Carlo [4, 5, 9],
proposes a parametric family q(x|�), where � is a free parameter, and uses the reverse
Kullback-Leibler (KL) divergence DKL(⇡||q�) as an objective function, choosing � to mini-
mize

argmin
�

DKL(q�||⇡) 6= ⇡(x) q(x|�) (3)

argmin
�

DKL(⇡||q�) =
Z

⇡(x) log


⇡(x)

q(x|�)

�
dx. (4)

This KL divergence between the true posterior distribution p(x|y) and proposal distribution
q(x|�) is also known as the relative entropy criterion, and is a preferred objective function
in situations in which the estimation goal construct a high-quality weighted sample repre-
sentation, rather than to minimize the variance of a particular expectation [4].

In an amortized inference setting, instead of learning � explicitly for a fixed value of y,
we learn a mapping from y to �. More explicitly, if y 2 Y and � 2 #, then learning an
explicit mapping ' : Y ! # allows performing approximate inference for p(x|y) with only
the computational complexity of evaluating the deterministic function '. The tradeo↵ is
that the training of ' itself may be quite involved.

We thus generalize the adaptive importance sampling algorithms by learning a family of
distributions q(x|y), parameterized by the observed data y. Suppose that � = '(⌘,y),
where the function ' is parameterized by a set of higher-level parameters ⌘. We would like
a choice of ⌘ which performs well across all datasets y. We can frame this as minimizing
the expected value of Eq. 4 under p(y), suggesting an objective function J (⌘) defined as

J (⌘) =

Z
DKL(⇡||q�)p(y)dy (5)

=

Z
p(y)

Z
p(x|y) log


p(x|y)

q(x|'(⌘,y))

�
dxdy (6)

= Ep(x,y) [� log q(x|'(⌘,y))] + const. (7)

which has a gradient r⌘J (⌘) = Ep(x,y) [�r⌘ log q(x|'(⌘,y))] .

Notice that these expectations are with respect to the tractable joint distribution p(x,y).
We can thus fit ⌘ by stochastic gradient descent, estimating the expectation of the gradient
r⌘J (⌘) by sampling synthetic full-data training examples {x,y} from the original model.
This procedure can be performed entirely o✏ine — we require only to be able to sample from
the joint distribution p(x,y) to generate candidate data points (e↵ectively providing infinite
training data). In any directed graphical model this can be achieved by ancestral sampling,

3

Single dataset :

yn

�n

tn

↵

�

N

yn

�n

tn

↵

�
N

yn
'�n �n

tn

'↵�

↵

�
N

Figure 2: a hierarchical Bayesian model. (left) A generative model for the data {xn};
(middle) with dependency structure inverted; (right) showing neural conditional density
estimators. Each yn ⇠ Poisson(�ntn), with �n ⇠ Gamma(↵,�) and gamma priors on ↵,�.
The learned factor '�n is replicated N times in the inverse model, allowing us to re-use the
weights.

p̃(x|y) =
NY

i=1

p̃(xi|fpa(xi))

The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both
in the context of population Monte Carlo (PMC) [3] and sequential Monte Carlo [4, 5, 9],
proposes a parametric family q(x|�), where � is a free parameter, and uses the reverse
Kullback-Leibler (KL) divergence DKL(⇡||q�) as an objective function, choosing � to mini-
mize

argmin
�

DKL(q�||⇡) 6= ⇡(x) = p(x|y) q(x|�) (3)

argmin
�

DKL(⇡||q�) =
Z

⇡(x) log


⇡(x)

q(x|�)

�
dx. (4)

argmin
⌘

Ep(y)

⇥
DKL(⇡||q'(⌘,y))

⇤
(5)

This KL divergence between the true posterior distribution p(x|y) and proposal distribution
q(x|�) is also known as the relative entropy criterion, and is a preferred objective function
in situations in which the estimation goal construct a high-quality weighted sample repre-
sentation, rather than to minimize the variance of a particular expectation [4].

In an amortized inference setting, instead of learning � explicitly for a fixed value of y,
we learn a mapping from y to �. More explicitly, if y 2 Y and � 2 #, then learning an
explicit mapping ' : Y ! # allows performing approximate inference for p(x|y) with only
the computational complexity of evaluating the deterministic function '. The tradeo↵ is
that the training of ' itself may be quite involved.

We thus generalize the adaptive importance sampling algorithms by learning a family of
distributions q(x|y), parameterized by the observed data y. Suppose that � = '(⌘,y),
where the function ' is parameterized by a set of higher-level parameters ⌘. We would like
a choice of ⌘ which performs well across all datasets y. We can frame this as minimizing
the expected value of Eq. 5 under p(y), suggesting an objective function J (⌘) defined as

J (⌘) =

Z
DKL(⇡||q�)p(y)dy (6)

=

Z
p(y)

Z
p(x|y) log


p(x|y)

q(x|'(⌘,y))

�
dxdy (7)

= Ep(x,y) [� log q(x|'(⌘,y))] + const. (8)

which has a gradient r⌘J (⌘) = Ep(x,y) [�r⌘ log q(x|'(⌘,y))] .

Notice that these expectations are with respect to the tractable joint distribution p(x,y).
We can thus fit ⌘ by stochastic gradient descent, estimating the expectation of the gradient
r⌘J (⌘) by sampling synthetic full-data training examples {x,y} from the original model.
This procedure can be performed entirely o✏ine — we require only to be able to sample from

3

fit λ to learn an importance

sampling proposal

A probabilistic model
generates data

An inverse model
generates latents

Can we learn how to sample
from the inverse model?

tn

zn
w0

w1

w2 N

tn

zn
w0

w1

w2
N

tn

zn
w0

w1

w2

'w

N

Figure 1: a non-conjugate regression model, as (left) a Bayes net representing a generative
model for the data {tn}; (middle) with dependency structure inverted, a generative model
for the latent variables w0, w1, w2; (right) showing the explicit neural network structure of
the inverse conditional distribution p̃(w0:2|z1:N , t1:N). Here we place a Laplace prior on each
regression weight wd, and have Student-t likelihoods p(tn|zn, w0:2). New datasets {zn, tn}Nn=1
can be input directly into the joint density estimator 'w to estimate the posterior.

2 Approach

A directed graphical model, or Bayesian network [10, 12], defines a joint probability distri-
bution and conditional independence structure via a directed acyclic graph. For each xi in
a set of random variables x1, . . . , xN , the network structure specifies a conditional density
pi(xi|pa(xi)), where pa(xi) denotes the parent nodes of xi. The joint distribution over N
latent random variables x and M observed random variables y is defined as

p(x,y) ,
NY

i=1

p (xi|pa(xi))
MY

j=1

p (yj |pa(yj)) ; (1)

the inference goal is to characterize the posterior distribution ⇡(x) ⌘ p(x|y).
Our approach is two-fold. First, given a Bayesian network that acts as a generative model for
our observed data y given latent variables x, we construct a new Bayesian network which acts
as a generative model for our latent x, given observed data y. This network is constructed
such that the joint distribution defined by the original model p(x,y) = p(x)p(y|x) is identical
to that of the new “inverse model”, which we will refer to as p̃(x,y) = p̃(y)p̃(x|y), but with
a di↵erent factorization [13].

Unfortunately, unlike the original forward model, the inverse model has conditional densities
which we do not in general know how to normalize or sample from. However, were we to know
the conditional densities comprising the inverse model p̃(x|y), then given a particular dataset
y we could directly draw posterior samples simply by ancestral sampling from the inverse
graphical model. Thus the second aspect is learning approximations for the conditionals
p̃(xi|fpa(xi)), where fpa(xi) are parents of xi in the inverse model. To do so we employ
neural density estimators [1, 2, 7, 14], and design a procedure to train these “o✏ine”, in the
sense that no real data is required.

As an example, consider the non-conjugate polynomial regression model shown in Figure 1,
along with its inverse graphical model, and the resulting neural network structure. Note
particularly that although the original graphical model which expressed p(y|x)p(x) factorizes
into products over yn which are conditionally independent given x, in the inverse model
p̃(x|y)p̃(y) due to the explaining-away phenomenon all latent variables depend on all others.

2.1 Learning a family of importance sampling densities

Simple importance sampling in a Bayesian network performs inference by sampling x from
some proposal density q(x|·), and computing importance weights w(x) = p(x,y)/q(x|·)
which, for K samples of x, yields a posterior approximation

p̂(x|y) =
KX

k=1

Wk�xk(x) Wk =
w(xk)PK
j=1 w(xj)

w(x) =
p(x,y)

q(x|�) (2)

The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both

2

tn

zn
w0

w1

w2 N

tn

zn
w0

w1

w2
N

tn

zn
w0

w1

w2

'w

N

Figure 1: a non-conjugate regression model, as (left) a Bayes net representing a generative
model for the data {tn}; (middle) with dependency structure inverted, a generative model
for the latent variables w0, w1, w2; (right) showing the explicit neural network structure of
the inverse conditional distribution p̃(w0:2|z1:N , t1:N). Here we place a Laplace prior on each
regression weight wd, and have Student-t likelihoods p(tn|zn, w0:2). New datasets {zn, tn}Nn=1
can be input directly into the joint density estimator 'w to estimate the posterior.

2 Approach

A directed graphical model, or Bayesian network [10, 12], defines a joint probability distri-
bution and conditional independence structure via a directed acyclic graph. For each xi in
a set of random variables x1, . . . , xN , the network structure specifies a conditional density
pi(xi|pa(xi)), where pa(xi) denotes the parent nodes of xi. The joint distribution over N
latent random variables x and M observed random variables y is defined as

p(x,y) ,
NY

i=1

p (xi|pa(xi))
MY

j=1

p (yj |pa(yj)) ; (1)

the inference goal is to characterize the posterior distribution ⇡(x) ⌘ p(x|y).
Our approach is two-fold. First, given a Bayesian network that acts as a generative model for
our observed data y given latent variables x, we construct a new Bayesian network which acts
as a generative model for our latent x, given observed data y. This network is constructed
such that the joint distribution defined by the original model p(x,y) = p(x)p(y|x) is identical
to that of the new “inverse model”, which we will refer to as p̃(x,y) = p̃(y)p̃(x|y), but with
a di↵erent factorization [13].

Unfortunately, unlike the original forward model, the inverse model has conditional densities
which we do not in general know how to normalize or sample from. However, were we to know
the conditional densities comprising the inverse model p̃(x|y), then given a particular dataset
y we could directly draw posterior samples simply by ancestral sampling from the inverse
graphical model. Thus the second aspect is learning approximations for the conditionals
p̃(xi|fpa(xi)), where fpa(xi) are parents of xi in the inverse model. To do so we employ
neural density estimators [1, 2, 7, 14], and design a procedure to train these “o✏ine”, in the
sense that no real data is required.

As an example, consider the non-conjugate polynomial regression model shown in Figure 1,
along with its inverse graphical model, and the resulting neural network structure. Note
particularly that although the original graphical model which expressed p(y|x)p(x) factorizes
into products over yn which are conditionally independent given x, in the inverse model
p̃(x|y)p̃(y) due to the explaining-away phenomenon all latent variables depend on all others.

2.1 Learning a family of importance sampling densities

Simple importance sampling in a Bayesian network performs inference by sampling x from
some proposal density q(x|·), and computing importance weights w(x) = p(x,y)/q(x|·)
which, for K samples of x, yields a posterior approximation

p̂(x|y) =
KX

k=1

Wk�xk(x) Wk =
w(xk)PK
j=1 w(xj)

w(x) =
p(x,y)

q(x|�) (2)

The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both

2

tn

zn
w0

w1

w2 N

tn

zn
w0

w1

w2
N

tn

zn
w0

w1

w2

'w

N

Figure 1: a non-conjugate regression model, as (left) a Bayes net representing a generative
model for the data {tn}; (middle) with dependency structure inverted, a generative model
for the latent variables w0, w1, w2; (right) showing the explicit neural network structure of
the inverse conditional distribution p̃(w0:2|z1:N , t1:N). Here we place a Laplace prior on each
regression weight wd, and have Student-t likelihoods p(tn|zn, w0:2). New datasets {zn, tn}Nn=1
can be input directly into the joint density estimator 'w to estimate the posterior.

2 Approach

A directed graphical model, or Bayesian network [10, 12], defines a joint probability distri-
bution and conditional independence structure via a directed acyclic graph. For each xi in
a set of random variables x1, . . . , xN , the network structure specifies a conditional density
pi(xi|pa(xi)), where pa(xi) denotes the parent nodes of xi. The joint distribution over N
latent random variables x and M observed random variables y is defined as

p(x,y) ,
NY

i=1

p (xi|pa(xi))
MY

j=1

p (yj |pa(yj)) ; (1)

the inference goal is to characterize the posterior distribution ⇡(x) ⌘ p(x|y).
Our approach is two-fold. First, given a Bayesian network that acts as a generative model for
our observed data y given latent variables x, we construct a new Bayesian network which acts
as a generative model for our latent x, given observed data y. This network is constructed
such that the joint distribution defined by the original model p(x,y) = p(x)p(y|x) is identical
to that of the new “inverse model”, which we will refer to as p̃(x,y) = p̃(y)p̃(x|y), but with
a di↵erent factorization [13].

Unfortunately, unlike the original forward model, the inverse model has conditional densities
which we do not in general know how to normalize or sample from. However, were we to know
the conditional densities comprising the inverse model p̃(x|y), then given a particular dataset
y we could directly draw posterior samples simply by ancestral sampling from the inverse
graphical model. Thus the second aspect is learning approximations for the conditionals
p̃(xi|fpa(xi)), where fpa(xi) are parents of xi in the inverse model. To do so we employ
neural density estimators [1, 2, 7, 14], and design a procedure to train these “o✏ine”, in the
sense that no real data is required.

As an example, consider the non-conjugate polynomial regression model shown in Figure 1,
along with its inverse graphical model, and the resulting neural network structure. Note
particularly that although the original graphical model which expressed p(y|x)p(x) factorizes
into products over yn which are conditionally independent given x, in the inverse model
p̃(x|y)p̃(y) due to the explaining-away phenomenon all latent variables depend on all others.

2.1 Learning a family of importance sampling densities

Simple importance sampling in a Bayesian network performs inference by sampling x from
some proposal density q(x|·), and computing importance weights w(x) = p(x,y)/q(x|·)
which, for K samples of x, yields a posterior approximation

p̂(x|y) =
KX

k=1

Wk�xk(x) Wk =
w(xk)PK
j=1 w(xj)

w(x) =
p(x,y)

q(x|�) (2)

The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both

2

Inference networks as proposal distributions

yn

�n

tn

↵

�

N

yn

�n

tn

↵

�
N

yn
'�n �n

tn

'↵�

↵

�
N

Figure 2: a hierarchical Bayesian model. (left) A generative model for the data {xn};
(middle) with dependency structure inverted; (right) showing neural conditional density
estimators. Each yn ⇠ Poisson(�ntn), with �n ⇠ Gamma(↵,�) and gamma priors on ↵,�.
The learned factor '�n is replicated N times in the inverse model, allowing us to re-use the
weights.

p̃(x|y) =
NY

i=1

p̃(xi|fpa(xi))

The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both
in the context of population Monte Carlo (PMC) [3] and sequential Monte Carlo [4, 5, 9],
proposes a parametric family q(x|�), where � is a free parameter, and uses the reverse
Kullback-Leibler (KL) divergence DKL(⇡||q�) as an objective function, choosing � to mini-
mize

argmin
�

DKL(q�||⇡) 6= ⇡(x) q(x|�) (3)

argmin
�

DKL(⇡||q�) =
Z

⇡(x) log


⇡(x)

q(x|�)

�
dx. (4)

This KL divergence between the true posterior distribution p(x|y) and proposal distribution
q(x|�) is also known as the relative entropy criterion, and is a preferred objective function
in situations in which the estimation goal construct a high-quality weighted sample repre-
sentation, rather than to minimize the variance of a particular expectation [4].

In an amortized inference setting, instead of learning � explicitly for a fixed value of y,
we learn a mapping from y to �. More explicitly, if y 2 Y and � 2 #, then learning an
explicit mapping ' : Y ! # allows performing approximate inference for p(x|y) with only
the computational complexity of evaluating the deterministic function '. The tradeo↵ is
that the training of ' itself may be quite involved.

We thus generalize the adaptive importance sampling algorithms by learning a family of
distributions q(x|y), parameterized by the observed data y. Suppose that � = '(⌘,y),
where the function ' is parameterized by a set of higher-level parameters ⌘. We would like
a choice of ⌘ which performs well across all datasets y. We can frame this as minimizing
the expected value of Eq. 4 under p(y), suggesting an objective function J (⌘) defined as

J (⌘) =

Z
DKL(⇡||q�)p(y)dy (5)

=

Z
p(y)

Z
p(x|y) log


p(x|y)

q(x|'(⌘,y))

�
dxdy (6)

= Ep(x,y) [� log q(x|'(⌘,y))] + const. (7)

which has a gradient r⌘J (⌘) = Ep(x,y) [�r⌘ log q(x|'(⌘,y))] .

Notice that these expectations are with respect to the tractable joint distribution p(x,y).
We can thus fit ⌘ by stochastic gradient descent, estimating the expectation of the gradient
r⌘J (⌘) by sampling synthetic full-data training examples {x,y} from the original model.
This procedure can be performed entirely o✏ine — we require only to be able to sample from
the joint distribution p(x,y) to generate candidate data points (e↵ectively providing infinite
training data). In any directed graphical model this can be achieved by ancestral sampling,

3

yn

�n

tn

↵

�

N

yn

�n

tn

↵

�
N

yn
'�n �n

tn

'↵�

↵

�
N

Figure 2: a hierarchical Bayesian model. (left) A generative model for the data {xn};
(middle) with dependency structure inverted; (right) showing neural conditional density
estimators. Each yn ⇠ Poisson(�ntn), with �n ⇠ Gamma(↵,�) and gamma priors on ↵,�.
The learned factor '�n is replicated N times in the inverse model, allowing us to re-use the
weights.

p̃(x|y) =
NY

i=1

p̃(xi|fpa(xi))

The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both
in the context of population Monte Carlo (PMC) [3] and sequential Monte Carlo [4, 5, 9],
proposes a parametric family q(x|�), where � is a free parameter, and uses the reverse
Kullback-Leibler (KL) divergence DKL(⇡||q�) as an objective function, choosing � to mini-
mize

argmin
�

DKL(q�||⇡) 6= ⇡(x) = p(x|y) q(x|�) (3)

argmin
�

DKL(⇡||q�) =
Z

⇡(x) log


⇡(x)

q(x|�)

�
dx. (4)

argmin
⌘

Ep(y)

⇥
DKL(⇡||q'(⌘,y))

⇤
(5)

This KL divergence between the true posterior distribution p(x|y) and proposal distribution
q(x|�) is also known as the relative entropy criterion, and is a preferred objective function
in situations in which the estimation goal construct a high-quality weighted sample repre-
sentation, rather than to minimize the variance of a particular expectation [4].

In an amortized inference setting, instead of learning � explicitly for a fixed value of y,
we learn a mapping from y to �. More explicitly, if y 2 Y and � 2 #, then learning an
explicit mapping ' : Y ! # allows performing approximate inference for p(x|y) with only
the computational complexity of evaluating the deterministic function '. The tradeo↵ is
that the training of ' itself may be quite involved.

We thus generalize the adaptive importance sampling algorithms by learning a family of
distributions q(x|y), parameterized by the observed data y. Suppose that � = '(⌘,y),
where the function ' is parameterized by a set of higher-level parameters ⌘. We would like
a choice of ⌘ which performs well across all datasets y. We can frame this as minimizing
the expected value of Eq. 5 under p(y), suggesting an objective function J (⌘) defined as

J (⌘) =

Z
DKL(⇡||q�)p(y)dy (6)

=

Z
p(y)

Z
p(x|y) log


p(x|y)

q(x|'(⌘,y))

�
dxdy (7)

= Ep(x,y) [� log q(x|'(⌘,y))] + const. (8)

which has a gradient r⌘J (⌘) = Ep(x,y) [�r⌘ log q(x|'(⌘,y))] .

Notice that these expectations are with respect to the tractable joint distribution p(x,y).
We can thus fit ⌘ by stochastic gradient descent, estimating the expectation of the gradient
r⌘J (⌘) by sampling synthetic full-data training examples {x,y} from the original model.
This procedure can be performed entirely o✏ine — we require only to be able to sample from

3

Averaging over  
all possible datasets:

learn a mapping from

arbitrary datasets to λ

Idea: amortize inference by learning a map from data to target

approximating family

yn

�n

tn

↵

�

N

yn

�n

tn

↵

�
N

yn
'�n �n

tn

'↵�

↵

�
N

Figure 2: a hierarchical Bayesian model. (left) A generative model for the data {xn};
(middle) with dependency structure inverted; (right) showing neural conditional density
estimators. Each yn ⇠ Poisson(�ntn), with �n ⇠ Gamma(↵,�) and gamma priors on ↵,�.
The learned factor '�n is replicated N times in the inverse model, allowing us to re-use the
weights.

p̃(x|y) =
NY

i=1

p̃(xi|fpa(xi))

The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both
in the context of population Monte Carlo (PMC) [3] and sequential Monte Carlo [4, 5, 9],
proposes a parametric family q(x|�), where � is a free parameter, and uses the reverse
Kullback-Leibler (KL) divergence DKL(⇡||q�) as an objective function, choosing � to mini-
mize

argmin
�

DKL(q�||⇡) 6= ⇡(x) q(x|�) (3)

DKL(⇡||q�) =
Z

⇡(x) log


⇡(x)

q(x|�)

�
dx. (4)

This KL divergence between the true posterior distribution p(x|y) and proposal distribution
q(x|�) is also known as the relative entropy criterion, and is a preferred objective function
in situations in which the estimation goal construct a high-quality weighted sample repre-
sentation, rather than to minimize the variance of a particular expectation [4].

In an amortized inference setting, instead of learning � explicitly for a fixed value of y,
we learn a mapping from y to �. More explicitly, if y 2 Y and � 2 #, then learning an
explicit mapping ' : Y ! # allows performing approximate inference for p(x|y) with only
the computational complexity of evaluating the deterministic function '. The tradeo↵ is
that the training of ' itself may be quite involved.

We thus generalize the adaptive importance sampling algorithms by learning a family of
distributions q(x|y), parameterized by the observed data y. Suppose that � = '(⌘,y),
where the function ' is parameterized by a set of higher-level parameters ⌘. We would like
a choice of ⌘ which performs well across all datasets y. We can frame this as minimizing
the expected value of Eq. 4 under p(y), suggesting an objective function J (⌘) defined as

J (⌘) =

Z
DKL(⇡||q�)p(y)dy (5)

=

Z
p(y)

Z
p(x|y) log


p(x|y)

q(x|'(⌘,y))

�
dxdy (6)

= Ep(x,y) [� log q(x|'(⌘,y))] + const. (7)

which has a gradient r⌘J (⌘) = Ep(x,y) [�r⌘ log q(x|'(⌘,y))] .

Notice that these expectations are with respect to the tractable joint distribution p(x,y).
We can thus fit ⌘ by stochastic gradient descent, estimating the expectation of the gradient
r⌘J (⌘) by sampling synthetic full-data training examples {x,y} from the original model.
This procedure can be performed entirely o✏ine — we require only to be able to sample from
the joint distribution p(x,y) to generate candidate data points (e↵ectively providing infinite
training data). In any directed graphical model this can be achieved by ancestral sampling,

3

Target density ,

yn

�n

tn

↵

�

N

yn

�n

tn

↵

�
N

yn
'�n �n

tn

'↵�

↵

�
N

Figure 2: a hierarchical Bayesian model. (left) A generative model for the data {xn};
(middle) with dependency structure inverted; (right) showing neural conditional density
estimators. Each yn ⇠ Poisson(�ntn), with �n ⇠ Gamma(↵,�) and gamma priors on ↵,�.
The learned factor '�n is replicated N times in the inverse model, allowing us to re-use the
weights.

p̃(x|y) =
NY

i=1

p̃(xi|fpa(xi))

The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both
in the context of population Monte Carlo (PMC) [3] and sequential Monte Carlo [4, 5, 9],
proposes a parametric family q(x|�), where � is a free parameter, and uses the reverse
Kullback-Leibler (KL) divergence DKL(⇡||q�) as an objective function, choosing � to mini-
mize

argmin
�

DKL(q�||⇡) 6= ⇡(x) = p(x|y) q(x|�) (3)

argmin
�

DKL(⇡||q�) =
Z

⇡(x) log


⇡(x)

q(x|�)

�
dx. (4)

argmin
⌘

Ep(y)

⇥
DKL(⇡||q'(⌘,y))

⇤
(5)

This KL divergence between the true posterior distribution p(x|y) and proposal distribution
q(x|�) is also known as the relative entropy criterion, and is a preferred objective function
in situations in which the estimation goal construct a high-quality weighted sample repre-
sentation, rather than to minimize the variance of a particular expectation [4].

In an amortized inference setting, instead of learning � explicitly for a fixed value of y,
we learn a mapping from y to �. More explicitly, if y 2 Y and � 2 #, then learning an
explicit mapping ' : Y ! # allows performing approximate inference for p(x|y) with only
the computational complexity of evaluating the deterministic function '. The tradeo↵ is
that the training of ' itself may be quite involved.

We thus generalize the adaptive importance sampling algorithms by learning a family of
distributions q(x|y), parameterized by the observed data y. Suppose that � = '(⌘,y),
where the function ' is parameterized by a set of higher-level parameters ⌘. We would like
a choice of ⌘ which performs well across all datasets y. We can frame this as minimizing
the expected value of Eq. 5 under p(y), suggesting an objective function J (⌘) defined as

J (⌘) =

Z
DKL(⇡||q�)p(y)dy (6)

=

Z
p(y)

Z
p(x|y) log


p(x|y)

q(x|'(⌘,y))

�
dxdy (7)

= Ep(x,y) [� log q(x|'(⌘,y))] + const. (8)

which has a gradient r⌘J (⌘) = Ep(x,y) [�r⌘ log q(x|'(⌘,y))] .

Notice that these expectations are with respect to the tractable joint distribution p(x,y).
We can thus fit ⌘ by stochastic gradient descent, estimating the expectation of the gradient
r⌘J (⌘) by sampling synthetic full-data training examples {x,y} from the original model.
This procedure can be performed entirely o✏ine — we require only to be able to sample from

3

A probabilistic model
generates data

An inverse model
generates latents

Can we learn how to sample
from the inverse model?

tn

zn
w0

w1

w2 N

tn

zn
w0

w1

w2
N

tn

zn
w0

w1

w2

'w

N

Figure 1: a non-conjugate regression model, as (left) a Bayes net representing a generative
model for the data {tn}; (middle) with dependency structure inverted, a generative model
for the latent variables w0, w1, w2; (right) showing the explicit neural network structure of
the inverse conditional distribution p̃(w0:2|z1:N , t1:N). Here we place a Laplace prior on each
regression weight wd, and have Student-t likelihoods p(tn|zn, w0:2). New datasets {zn, tn}Nn=1
can be input directly into the joint density estimator 'w to estimate the posterior.

2 Approach

A directed graphical model, or Bayesian network [10, 12], defines a joint probability distri-
bution and conditional independence structure via a directed acyclic graph. For each xi in
a set of random variables x1, . . . , xN , the network structure specifies a conditional density
pi(xi|pa(xi)), where pa(xi) denotes the parent nodes of xi. The joint distribution over N
latent random variables x and M observed random variables y is defined as

p(x,y) ,
NY

i=1

p (xi|pa(xi))
MY

j=1

p (yj |pa(yj)) ; (1)

the inference goal is to characterize the posterior distribution ⇡(x) ⌘ p(x|y).
Our approach is two-fold. First, given a Bayesian network that acts as a generative model for
our observed data y given latent variables x, we construct a new Bayesian network which acts
as a generative model for our latent x, given observed data y. This network is constructed
such that the joint distribution defined by the original model p(x,y) = p(x)p(y|x) is identical
to that of the new “inverse model”, which we will refer to as p̃(x,y) = p̃(y)p̃(x|y), but with
a di↵erent factorization [13].

Unfortunately, unlike the original forward model, the inverse model has conditional densities
which we do not in general know how to normalize or sample from. However, were we to know
the conditional densities comprising the inverse model p̃(x|y), then given a particular dataset
y we could directly draw posterior samples simply by ancestral sampling from the inverse
graphical model. Thus the second aspect is learning approximations for the conditionals
p̃(xi|fpa(xi)), where fpa(xi) are parents of xi in the inverse model. To do so we employ
neural density estimators [1, 2, 7, 14], and design a procedure to train these “o✏ine”, in the
sense that no real data is required.

As an example, consider the non-conjugate polynomial regression model shown in Figure 1,
along with its inverse graphical model, and the resulting neural network structure. Note
particularly that although the original graphical model which expressed p(y|x)p(x) factorizes
into products over yn which are conditionally independent given x, in the inverse model
p̃(x|y)p̃(y) due to the explaining-away phenomenon all latent variables depend on all others.

2.1 Learning a family of importance sampling densities

Simple importance sampling in a Bayesian network performs inference by sampling x from
some proposal density q(x|·), and computing importance weights w(x) = p(x,y)/q(x|·)
which, for K samples of x, yields a posterior approximation

p̂(x|y) =
KX

k=1

Wk�xk(x) Wk =
w(xk)PK
j=1 w(xj)

w(x) =
p(x,y)

q(x|�) (2)

The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both

2

tn

zn
w0

w1

w2 N

tn

zn
w0

w1

w2
N

tn

zn
w0

w1

w2

'w

N

Figure 1: a non-conjugate regression model, as (left) a Bayes net representing a generative
model for the data {tn}; (middle) with dependency structure inverted, a generative model
for the latent variables w0, w1, w2; (right) showing the explicit neural network structure of
the inverse conditional distribution p̃(w0:2|z1:N , t1:N). Here we place a Laplace prior on each
regression weight wd, and have Student-t likelihoods p(tn|zn, w0:2). New datasets {zn, tn}Nn=1
can be input directly into the joint density estimator 'w to estimate the posterior.

2 Approach

A directed graphical model, or Bayesian network [10, 12], defines a joint probability distri-
bution and conditional independence structure via a directed acyclic graph. For each xi in
a set of random variables x1, . . . , xN , the network structure specifies a conditional density
pi(xi|pa(xi)), where pa(xi) denotes the parent nodes of xi. The joint distribution over N
latent random variables x and M observed random variables y is defined as

p(x,y) ,
NY

i=1

p (xi|pa(xi))
MY

j=1

p (yj |pa(yj)) ; (1)

the inference goal is to characterize the posterior distribution ⇡(x) ⌘ p(x|y).
Our approach is two-fold. First, given a Bayesian network that acts as a generative model for
our observed data y given latent variables x, we construct a new Bayesian network which acts
as a generative model for our latent x, given observed data y. This network is constructed
such that the joint distribution defined by the original model p(x,y) = p(x)p(y|x) is identical
to that of the new “inverse model”, which we will refer to as p̃(x,y) = p̃(y)p̃(x|y), but with
a di↵erent factorization [13].

Unfortunately, unlike the original forward model, the inverse model has conditional densities
which we do not in general know how to normalize or sample from. However, were we to know
the conditional densities comprising the inverse model p̃(x|y), then given a particular dataset
y we could directly draw posterior samples simply by ancestral sampling from the inverse
graphical model. Thus the second aspect is learning approximations for the conditionals
p̃(xi|fpa(xi)), where fpa(xi) are parents of xi in the inverse model. To do so we employ
neural density estimators [1, 2, 7, 14], and design a procedure to train these “o✏ine”, in the
sense that no real data is required.

As an example, consider the non-conjugate polynomial regression model shown in Figure 1,
along with its inverse graphical model, and the resulting neural network structure. Note
particularly that although the original graphical model which expressed p(y|x)p(x) factorizes
into products over yn which are conditionally independent given x, in the inverse model
p̃(x|y)p̃(y) due to the explaining-away phenomenon all latent variables depend on all others.

2.1 Learning a family of importance sampling densities

Simple importance sampling in a Bayesian network performs inference by sampling x from
some proposal density q(x|·), and computing importance weights w(x) = p(x,y)/q(x|·)
which, for K samples of x, yields a posterior approximation

p̂(x|y) =
KX

k=1

Wk�xk(x) Wk =
w(xk)PK
j=1 w(xj)

w(x) =
p(x,y)

q(x|�) (2)

The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both

2

tn

zn
w0

w1

w2 N

tn

zn
w0

w1

w2
N

tn

zn
w0

w1

w2

'w

N

Figure 1: a non-conjugate regression model, as (left) a Bayes net representing a generative
model for the data {tn}; (middle) with dependency structure inverted, a generative model
for the latent variables w0, w1, w2; (right) showing the explicit neural network structure of
the inverse conditional distribution p̃(w0:2|z1:N , t1:N). Here we place a Laplace prior on each
regression weight wd, and have Student-t likelihoods p(tn|zn, w0:2). New datasets {zn, tn}Nn=1
can be input directly into the joint density estimator 'w to estimate the posterior.

2 Approach

A directed graphical model, or Bayesian network [10, 12], defines a joint probability distri-
bution and conditional independence structure via a directed acyclic graph. For each xi in
a set of random variables x1, . . . , xN , the network structure specifies a conditional density
pi(xi|pa(xi)), where pa(xi) denotes the parent nodes of xi. The joint distribution over N
latent random variables x and M observed random variables y is defined as

p(x,y) ,
NY

i=1

p (xi|pa(xi))
MY

j=1

p (yj |pa(yj)) ; (1)

the inference goal is to characterize the posterior distribution ⇡(x) ⌘ p(x|y).
Our approach is two-fold. First, given a Bayesian network that acts as a generative model for
our observed data y given latent variables x, we construct a new Bayesian network which acts
as a generative model for our latent x, given observed data y. This network is constructed
such that the joint distribution defined by the original model p(x,y) = p(x)p(y|x) is identical
to that of the new “inverse model”, which we will refer to as p̃(x,y) = p̃(y)p̃(x|y), but with
a di↵erent factorization [13].

Unfortunately, unlike the original forward model, the inverse model has conditional densities
which we do not in general know how to normalize or sample from. However, were we to know
the conditional densities comprising the inverse model p̃(x|y), then given a particular dataset
y we could directly draw posterior samples simply by ancestral sampling from the inverse
graphical model. Thus the second aspect is learning approximations for the conditionals
p̃(xi|fpa(xi)), where fpa(xi) are parents of xi in the inverse model. To do so we employ
neural density estimators [1, 2, 7, 14], and design a procedure to train these “o✏ine”, in the
sense that no real data is required.

As an example, consider the non-conjugate polynomial regression model shown in Figure 1,
along with its inverse graphical model, and the resulting neural network structure. Note
particularly that although the original graphical model which expressed p(y|x)p(x) factorizes
into products over yn which are conditionally independent given x, in the inverse model
p̃(x|y)p̃(y) due to the explaining-away phenomenon all latent variables depend on all others.

2.1 Learning a family of importance sampling densities

Simple importance sampling in a Bayesian network performs inference by sampling x from
some proposal density q(x|·), and computing importance weights w(x) = p(x,y)/q(x|·)
which, for K samples of x, yields a posterior approximation

p̂(x|y) =
KX

k=1

Wk�xk(x) Wk =
w(xk)PK
j=1 w(xj)

w(x) =
p(x,y)

q(x|�) (2)

The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both

2

Inference networks as proposal distributions

yn

�n

tn

↵

�

N

yn

�n

tn

↵

�
N

yn
'�n �n

tn

'↵�

↵

�
N

Figure 2: a hierarchical Bayesian model. (left) A generative model for the data {xn};
(middle) with dependency structure inverted; (right) showing neural conditional density
estimators. Each yn ⇠ Poisson(�ntn), with �n ⇠ Gamma(↵,�) and gamma priors on ↵,�.
The learned factor '�n is replicated N times in the inverse model, allowing us to re-use the
weights.

p̃(x|y) =
NY

i=1

p̃(xi|fpa(xi))

The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both
in the context of population Monte Carlo (PMC) [3] and sequential Monte Carlo [4, 5, 9],
proposes a parametric family q(x|�), where � is a free parameter, and uses the reverse
Kullback-Leibler (KL) divergence DKL(⇡||q�) as an objective function, choosing � to mini-
mize

DKL(⇡||q�) =
Z

⇡(x) log


⇡(x)

q(x|�)

�
dx. (3)

This KL divergence between the true posterior distribution p(x|y) and proposal distribution
q(x|�) is also known as the relative entropy criterion, and is a preferred objective function
in situations in which the estimation goal construct a high-quality weighted sample repre-
sentation, rather than to minimize the variance of a particular expectation [4].

In an amortized inference setting, instead of learning � explicitly for a fixed value of y,
we learn a mapping from y to �. More explicitly, if y 2 Y and � 2 #, then learning an
explicit mapping ' : Y ! # allows performing approximate inference for p(x|y) with only
the computational complexity of evaluating the deterministic function '. The tradeo↵ is
that the training of ' itself may be quite involved.

We thus generalize the adaptive importance sampling algorithms by learning a family of
distributions q(x|y), parameterized by the observed data y. Suppose that � = '(⌘,y),
where the function ' is parameterized by a set of higher-level parameters ⌘. We would like
a choice of ⌘ which performs well across all datasets y. We can frame this as minimizing
the expected value of Eq. 3 under p(y), suggesting an objective function J (⌘) defined as

J (⌘) =

Z
DKL(⇡||q�)p(y)dy (4)

=

Z
p(y)

Z
p(x|y) log


p(x|y)

q(x|'(⌘,y))

�
dxdy (5)

= Ep(x,y) [� log q(x|'(⌘,y))] + const. (6)

which has a gradient r⌘J (⌘) = Ep(x,y) [�r⌘ log q(x|'(⌘,y))] .

Notice that these expectations are with respect to the tractable joint distribution p(x,y).
We can thus fit ⌘ by stochastic gradient descent, estimating the expectation of the gradient
r⌘J (⌘) by sampling synthetic full-data training examples {x,y} from the original model.
This procedure can be performed entirely o✏ine — we require only to be able to sample from
the joint distribution p(x,y) to generate candidate data points (e↵ectively providing infinite
training data). In any directed graphical model this can be achieved by ancestral sampling,
where the variables y are treated as as-yet unobserved. Furthermore, we do not need need
to be able to compute gradients of our model p(x,y) itself — we only need the gradients of
our recognition model q(x|'(⌘,y)), allowing use of any di↵erentiable representation for q.

3

yn

�n

tn

↵

�

N

yn

�n

tn

↵

�
N

yn
'�n �n

tn

'↵�

↵

�
N

Figure 2: a hierarchical Bayesian model. (left) A generative model for the data {xn};
(middle) with dependency structure inverted; (right) showing neural conditional density
estimators. Each yn ⇠ Poisson(�ntn), with �n ⇠ Gamma(↵,�) and gamma priors on ↵,�.
The learned factor '�n is replicated N times in the inverse model, allowing us to re-use the
weights.

p̃(x|y) =
NY

i=1

p̃(xi|fpa(xi))

The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both
in the context of population Monte Carlo (PMC) [3] and sequential Monte Carlo [4, 5, 9],
proposes a parametric family q(x|�), where � is a free parameter, and uses the reverse
Kullback-Leibler (KL) divergence DKL(⇡||q�) as an objective function, choosing � to mini-
mize

argmin
�

DKL(q�||⇡) 6= ⇡(x) q(x|�) (3)

argmin
�

DKL(⇡||q�) =
Z

⇡(x) log


⇡(x)

q(x|�)

�
dx. (4)

This KL divergence between the true posterior distribution p(x|y) and proposal distribution
q(x|�) is also known as the relative entropy criterion, and is a preferred objective function
in situations in which the estimation goal construct a high-quality weighted sample repre-
sentation, rather than to minimize the variance of a particular expectation [4].

In an amortized inference setting, instead of learning � explicitly for a fixed value of y,
we learn a mapping from y to �. More explicitly, if y 2 Y and � 2 #, then learning an
explicit mapping ' : Y ! # allows performing approximate inference for p(x|y) with only
the computational complexity of evaluating the deterministic function '. The tradeo↵ is
that the training of ' itself may be quite involved.

We thus generalize the adaptive importance sampling algorithms by learning a family of
distributions q(x|y), parameterized by the observed data y. Suppose that � = '(⌘,y),
where the function ' is parameterized by a set of higher-level parameters ⌘. We would like
a choice of ⌘ which performs well across all datasets y. We can frame this as minimizing
the expected value of Eq. 4 under p(y), suggesting an objective function J (⌘) defined as

J (⌘) =

Z
DKL(⇡||q�)p(y)dy (5)

=

Z
p(y)

Z
p(x|y) log


p(x|y)

q(x|'(⌘,y))

�
dxdy (6)

= Ep(x,y) [� log q(x|'(⌘,y))] + const. (7)

which has a gradient r⌘J (⌘) = Ep(x,y) [�r⌘ log q(x|'(⌘,y))] .

Notice that these expectations are with respect to the tractable joint distribution p(x,y).
We can thus fit ⌘ by stochastic gradient descent, estimating the expectation of the gradient
r⌘J (⌘) by sampling synthetic full-data training examples {x,y} from the original model.
This procedure can be performed entirely o✏ine — we require only to be able to sample from
the joint distribution p(x,y) to generate candidate data points (e↵ectively providing infinite
training data). In any directed graphical model this can be achieved by ancestral sampling,

3

yn

�n

tn

↵

�

N

yn

�n

tn

↵

�
N

yn
'�n �n

tn

'↵�

↵

�
N

Figure 2: a hierarchical Bayesian model. (left) A generative model for the data {xn};
(middle) with dependency structure inverted; (right) showing neural conditional density
estimators. Each yn ⇠ Poisson(�ntn), with �n ⇠ Gamma(↵,�) and gamma priors on ↵,�.
The learned factor '�n is replicated N times in the inverse model, allowing us to re-use the
weights.

p̃(x|y) =
NY

i=1

p̃(xi|fpa(xi))

The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both
in the context of population Monte Carlo (PMC) [3] and sequential Monte Carlo [4, 5, 9],
proposes a parametric family q(x|�), where � is a free parameter, and uses the reverse
Kullback-Leibler (KL) divergence DKL(⇡||q�) as an objective function, choosing � to mini-
mize

argmin
�

DKL(q�||⇡) 6= ⇡(x) = p(x|y) q(x|�) (3)

argmin
�

DKL(⇡||q�) =
Z

⇡(x) log


⇡(x)

q(x|�)

�
dx. (4)

argmin
⌘

Ep(y)

⇥
DKL(⇡||q'(⌘,y))

⇤
(5)

This KL divergence between the true posterior distribution p(x|y) and proposal distribution
q(x|�) is also known as the relative entropy criterion, and is a preferred objective function
in situations in which the estimation goal construct a high-quality weighted sample repre-
sentation, rather than to minimize the variance of a particular expectation [4].

In an amortized inference setting, instead of learning � explicitly for a fixed value of y,
we learn a mapping from y to �. More explicitly, if y 2 Y and � 2 #, then learning an
explicit mapping ' : Y ! # allows performing approximate inference for p(x|y) with only
the computational complexity of evaluating the deterministic function '. The tradeo↵ is
that the training of ' itself may be quite involved.

We thus generalize the adaptive importance sampling algorithms by learning a family of
distributions q(x|y), parameterized by the observed data y. Suppose that � = '(⌘,y),
where the function ' is parameterized by a set of higher-level parameters ⌘. We would like
a choice of ⌘ which performs well across all datasets y. We can frame this as minimizing
the expected value of Eq. 5 under p(y), suggesting an objective function J (⌘) defined as

J (⌘) =

Z
DKL(⇡||q�)p(y)dy (6)

=

Z
p(y)

Z
p(x|y) log


p(x|y)

q(x|'(⌘,y))

�
dxdy (7)

= Ep(x,y) [� log q(x|'(⌘,y))] + const. (8)

which has a gradient r⌘J (⌘) = Ep(x,y) [�r⌘ log q(x|'(⌘,y))] .

Notice that these expectations are with respect to the tractable joint distribution p(x,y).
We can thus fit ⌘ by stochastic gradient descent, estimating the expectation of the gradient
r⌘J (⌘) by sampling synthetic full-data training examples {x,y} from the original model.
This procedure can be performed entirely o✏ine — we require only to be able to sample from

3

Averaging over  
all possible datasets:

New objective function,
upper-level parameters:

yn

�n

tn

↵

�

N

yn

�n

tn

↵

�
N

yn
'�n �n

tn

'↵�

↵

�
N

Figure 2: a hierarchical Bayesian model. (left) A generative model for the data {xn};
(middle) with dependency structure inverted; (right) showing neural conditional density
estimators. Each yn ⇠ Poisson(�ntn), with �n ⇠ Gamma(↵,�) and gamma priors on ↵,�.
The learned factor '�n is replicated N times in the inverse model, allowing us to re-use the
weights.

in the context of population Monte Carlo (PMC) [3] and sequential Monte Carlo [4, 5, 9],
proposes a parametric family q(x|�), where � is a free parameter, and uses the reverse
Kullback-Leibler (KL) divergence DKL(⇡||q�) as an objective function, choosing � to mini-
mize

DKL(⇡||q�) =
Z

⇡(x) log


⇡(x)

q(x|�)

�
dx. (3)

This KL divergence between the true posterior distribution p(x|y) and proposal distribution
q(x|�) is also known as the relative entropy criterion, and is a preferred objective function
in situations in which the estimation goal construct a high-quality weighted sample repre-
sentation, rather than to minimize the variance of a particular expectation [4].

In an amortized inference setting, instead of learning � explicitly for a fixed value of y,
we learn a mapping from y to �. More explicitly, if y 2 Y and � 2 #, then learning an
explicit mapping ' : Y ! # allows performing approximate inference for p(x|y) with only
the computational complexity of evaluating the deterministic function '. The tradeo↵ is
that the training of ' itself may be quite involved.

We thus generalize the adaptive importance sampling algorithms by learning a family of
distributions q(x|y), parameterized by the observed data y. Suppose that � = '(⌘,y),
where the function ' is parameterized by a set of higher-level parameters ⌘. We would like
a choice of ⌘ which performs well across all datasets y. We can frame this as minimizing
the expected value of Eq. 3 under p(y), suggesting an objective function J (⌘) defined as

J (⌘) =

Z
DKL(⇡||q�)p(y)dy (4)

=

Z
p(y)

Z
p(x|y) log


p(x|y)

q(x|'(⌘,y))

�
dxdy (5)

= Ep(x,y) [� log q(x|'(⌘,y))] + const. (6)

which has a gradient r⌘J (⌘) = Ep(x,y) [�r⌘ log q(x|'(⌘,y))] .

Notice that these expectations are with respect to the tractable joint distribution p(x,y).
We can thus fit ⌘ by stochastic gradient descent, estimating the expectation of the gradient
r⌘J (⌘) by sampling synthetic full-data training examples {x,y} from the original model.
This procedure can be performed entirely o✏ine — we require only to be able to sample from
the joint distribution p(x,y) to generate candidate data points (e↵ectively providing infinite
training data). In any directed graphical model this can be achieved by ancestral sampling,
where the variables y are treated as as-yet unobserved. Furthermore, we do not need need
to be able to compute gradients of our model p(x,y) itself — we only need the gradients of
our recognition model q(x|'(⌘,y)), allowing use of any di↵erentiable representation for q.

In hierarchical models such as the model for failure rates of power plant pumps [6] in
Figure 2, conditional independence structure in an inverse model can be leveraged to break
down q(x|y) into a product of smaller conditional densities, each of the form qi(xi|fpa(xi)).
We take advantage of this structure by defining more parameter-e�cient representations of
q(x|·) that reuse replicated inverse conditional densities, and for more e�cient inference via
a sequential Monte Carlo algorithm.

3

Tractable gradient!  
Can train entirely offline:

approximate with samples

from the joint distribution

Training inference network on synthetic data

expectation over any data

we might observe

Inference Networks for Sequential Monte Carlo in Graphical Models

Figure 4. Representative output in the polynomial regression example. Plots show 100 samples each at 5% opacity, with the mean marked
as a solid dashed line. These are all proposed using the same pre-trained neural network — not just the same neural network structure, but
also identical learned weights. The MCMC posterior is generated by thinning 10000 samples by a factor 100, after 10000 samples of
burnin. The neural network proposal yields estimated polynomial curves close to the true posterior solution, albeit slightly more diffuse.

4.2. A hierarchical Bayesian model

Consider as a new example a representative multilevel
model where exact inference is intractable, a Poisson model
for estimating failure rates of power plant pumps (George
et al., 1993). Given N power plant pumps, each having
operated for tn thousands of hours, we see xn failures, fol-
lowing

↵ ⇠ Exponential(1.0), � ⇠ Gamma(0.1, 1.0),

✓n ⇠ Gamma(↵,�), yn ⇠ Poisson(✓ntn).

The graphical model, an inverse factorization, and the neural
network structure are shown in Figure 2. To generating syn-
thetic training data, tn are sampled iid from an exponential
distribution with mean 50.

The repeated structure in the inverse factorization of this
model allows us to learn a single inverse factor to represent
the distribution p̃(✓n|tn, yn) across all n. This yields a far
simpler learning problem than were we forced to fit all of
p̃(✓1:N |t1:N , y1:N) jointly. Further, the repeated structure

allows us to use a divide-and-conquer SMC algorithm (Lind-
sten et al., 2014) which works particularly efficiently on this
model. Each of the N replicated structures are sampled
in parallel with independent particle sets, weighted locally,
and resampled; once all ✓n are sampled, we end by sam-
pling ↵ and � jointly, which need both be included in order
to evaluate the final terms in the joint target density. We
stress that there is no obvious baseline proposal density to
use for a divide-and-conquer SMC algorithm, as neither the
marginal prior nor posterior distributions over ✓n are avail-
able in closed form. Any usage of this algorithm requires
manual specification of some proposal q(✓n).

We test our proposals on the actual power pump failure data
analyzed in George et al. (1993). The relative convergence
speeds of marginal likelihood estimators from importance
sampling from prior and neural network proposals, and
SMC with neural network proposals, are shown in Figure 5.
To capture the wide tails of the broad gamma distributions,
we use a mixture of 10 Gaussians here at each output node,
and 500 hidden units in each of two hidden layers.

Samples from prior

Non-conjugate polynomial regression

Inference Networks for Sequential Monte Carlo in Graphical Models

Figure 4. Representative output in the polynomial regression example. Plots show 100 samples each at 5% opacity, with the mean marked
as a solid dashed line. These are all proposed using the same pre-trained neural network — not just the same neural network structure, but
also identical learned weights. The MCMC posterior is generated by thinning 10000 samples by a factor 100, after 10000 samples of
burnin. The neural network proposal yields estimated polynomial curves close to the true posterior solution, albeit slightly more diffuse.

4.2. A hierarchical Bayesian model

Consider as a new example a representative multilevel
model where exact inference is intractable, a Poisson model
for estimating failure rates of power plant pumps (George
et al., 1993). Given N power plant pumps, each having
operated for tn thousands of hours, we see xn failures, fol-
lowing

↵ ⇠ Exponential(1.0), � ⇠ Gamma(0.1, 1.0),

✓n ⇠ Gamma(↵,�), yn ⇠ Poisson(✓ntn).

The graphical model, an inverse factorization, and the neural
network structure are shown in Figure 2. To generating syn-
thetic training data, tn are sampled iid from an exponential
distribution with mean 50.

The repeated structure in the inverse factorization of this
model allows us to learn a single inverse factor to represent
the distribution p̃(✓n|tn, yn) across all n. This yields a far
simpler learning problem than were we forced to fit all of
p̃(✓1:N |t1:N , y1:N) jointly. Further, the repeated structure

allows us to use a divide-and-conquer SMC algorithm (Lind-
sten et al., 2014) which works particularly efficiently on this
model. Each of the N replicated structures are sampled
in parallel with independent particle sets, weighted locally,
and resampled; once all ✓n are sampled, we end by sam-
pling ↵ and � jointly, which need both be included in order
to evaluate the final terms in the joint target density. We
stress that there is no obvious baseline proposal density to
use for a divide-and-conquer SMC algorithm, as neither the
marginal prior nor posterior distributions over ✓n are avail-
able in closed form. Any usage of this algorithm requires
manual specification of some proposal q(✓n).

We test our proposals on the actual power pump failure data
analyzed in George et al. (1993). The relative convergence
speeds of marginal likelihood estimators from importance
sampling from prior and neural network proposals, and
SMC with neural network proposals, are shown in Figure 5.
To capture the wide tails of the broad gamma distributions,
we use a mixture of 10 Gaussians here at each output node,
and 500 hidden units in each of two hidden layers.

Samples from prior

Inference Networks for Sequential Monte Carlo in Graphical Models

Figure 4. Representative output in the polynomial regression example. Plots show 100 samples each at 5% opacity, with the mean marked
as a solid dashed line. These are all proposed using the same pre-trained neural network — not just the same neural network structure, but
also identical learned weights. The MCMC posterior is generated by thinning 10000 samples by a factor 100, after 10000 samples of
burnin. The neural network proposal yields estimated polynomial curves close to the true posterior solution, albeit slightly more diffuse.

4.2. A hierarchical Bayesian model

Consider as a new example a representative multilevel
model where exact inference is intractable, a Poisson model
for estimating failure rates of power plant pumps (George
et al., 1993). Given N power plant pumps, each having
operated for tn thousands of hours, we see xn failures, fol-
lowing

↵ ⇠ Exponential(1.0), � ⇠ Gamma(0.1, 1.0),

✓n ⇠ Gamma(↵,�), yn ⇠ Poisson(✓ntn).

The graphical model, an inverse factorization, and the neural
network structure are shown in Figure 2. To generating syn-
thetic training data, tn are sampled iid from an exponential
distribution with mean 50.

The repeated structure in the inverse factorization of this
model allows us to learn a single inverse factor to represent
the distribution p̃(✓n|tn, yn) across all n. This yields a far
simpler learning problem than were we forced to fit all of
p̃(✓1:N |t1:N , y1:N) jointly. Further, the repeated structure

allows us to use a divide-and-conquer SMC algorithm (Lind-
sten et al., 2014) which works particularly efficiently on this
model. Each of the N replicated structures are sampled
in parallel with independent particle sets, weighted locally,
and resampled; once all ✓n are sampled, we end by sam-
pling ↵ and � jointly, which need both be included in order
to evaluate the final terms in the joint target density. We
stress that there is no obvious baseline proposal density to
use for a divide-and-conquer SMC algorithm, as neither the
marginal prior nor posterior distributions over ✓n are avail-
able in closed form. Any usage of this algorithm requires
manual specification of some proposal q(✓n).

We test our proposals on the actual power pump failure data
analyzed in George et al. (1993). The relative convergence
speeds of marginal likelihood estimators from importance
sampling from prior and neural network proposals, and
SMC with neural network proposals, are shown in Figure 5.
To capture the wide tails of the broad gamma distributions,
we use a mixture of 10 Gaussians here at each output node,
and 500 hidden units in each of two hidden layers.

Metropolis-Hastings

Non-conjugate polynomial regression

Inference Networks for Sequential Monte Carlo in Graphical Models

Figure 4. Representative output in the polynomial regression example. Plots show 100 samples each at 5% opacity, with the mean marked
as a solid dashed line. These are all proposed using the same pre-trained neural network — not just the same neural network structure, but
also identical learned weights. The MCMC posterior is generated by thinning 10000 samples by a factor 100, after 10000 samples of
burnin. The neural network proposal yields estimated polynomial curves close to the true posterior solution, albeit slightly more diffuse.

4.2. A hierarchical Bayesian model

Consider as a new example a representative multilevel
model where exact inference is intractable, a Poisson model
for estimating failure rates of power plant pumps (George
et al., 1993). Given N power plant pumps, each having
operated for tn thousands of hours, we see xn failures, fol-
lowing

↵ ⇠ Exponential(1.0), � ⇠ Gamma(0.1, 1.0),

✓n ⇠ Gamma(↵,�), yn ⇠ Poisson(✓ntn).

The graphical model, an inverse factorization, and the neural
network structure are shown in Figure 2. To generating syn-
thetic training data, tn are sampled iid from an exponential
distribution with mean 50.

The repeated structure in the inverse factorization of this
model allows us to learn a single inverse factor to represent
the distribution p̃(✓n|tn, yn) across all n. This yields a far
simpler learning problem than were we forced to fit all of
p̃(✓1:N |t1:N , y1:N) jointly. Further, the repeated structure

allows us to use a divide-and-conquer SMC algorithm (Lind-
sten et al., 2014) which works particularly efficiently on this
model. Each of the N replicated structures are sampled
in parallel with independent particle sets, weighted locally,
and resampled; once all ✓n are sampled, we end by sam-
pling ↵ and � jointly, which need both be included in order
to evaluate the final terms in the joint target density. We
stress that there is no obvious baseline proposal density to
use for a divide-and-conquer SMC algorithm, as neither the
marginal prior nor posterior distributions over ✓n are avail-
able in closed form. Any usage of this algorithm requires
manual specification of some proposal q(✓n).

We test our proposals on the actual power pump failure data
analyzed in George et al. (1993). The relative convergence
speeds of marginal likelihood estimators from importance
sampling from prior and neural network proposals, and
SMC with neural network proposals, are shown in Figure 5.
To capture the wide tails of the broad gamma distributions,
we use a mixture of 10 Gaussians here at each output node,
and 500 hidden units in each of two hidden layers.

Samples from proposal

Inference Networks for Sequential Monte Carlo in Graphical Models

Figure 4. Representative output in the polynomial regression example. Plots show 100 samples each at 5% opacity, with the mean marked
as a solid dashed line. These are all proposed using the same pre-trained neural network — not just the same neural network structure, but
also identical learned weights. The MCMC posterior is generated by thinning 10000 samples by a factor 100, after 10000 samples of
burnin. The neural network proposal yields estimated polynomial curves close to the true posterior solution, albeit slightly more diffuse.

4.2. A hierarchical Bayesian model

Consider as a new example a representative multilevel
model where exact inference is intractable, a Poisson model
for estimating failure rates of power plant pumps (George
et al., 1993). Given N power plant pumps, each having
operated for tn thousands of hours, we see xn failures, fol-
lowing

↵ ⇠ Exponential(1.0), � ⇠ Gamma(0.1, 1.0),

✓n ⇠ Gamma(↵,�), yn ⇠ Poisson(✓ntn).

The graphical model, an inverse factorization, and the neural
network structure are shown in Figure 2. To generating syn-
thetic training data, tn are sampled iid from an exponential
distribution with mean 50.

The repeated structure in the inverse factorization of this
model allows us to learn a single inverse factor to represent
the distribution p̃(✓n|tn, yn) across all n. This yields a far
simpler learning problem than were we forced to fit all of
p̃(✓1:N |t1:N , y1:N) jointly. Further, the repeated structure

allows us to use a divide-and-conquer SMC algorithm (Lind-
sten et al., 2014) which works particularly efficiently on this
model. Each of the N replicated structures are sampled
in parallel with independent particle sets, weighted locally,
and resampled; once all ✓n are sampled, we end by sam-
pling ↵ and � jointly, which need both be included in order
to evaluate the final terms in the joint target density. We
stress that there is no obvious baseline proposal density to
use for a divide-and-conquer SMC algorithm, as neither the
marginal prior nor posterior distributions over ✓n are avail-
able in closed form. Any usage of this algorithm requires
manual specification of some proposal q(✓n).

We test our proposals on the actual power pump failure data
analyzed in George et al. (1993). The relative convergence
speeds of marginal likelihood estimators from importance
sampling from prior and neural network proposals, and
SMC with neural network proposals, are shown in Figure 5.
To capture the wide tails of the broad gamma distributions,
we use a mixture of 10 Gaussians here at each output node,
and 500 hidden units in each of two hidden layers.

Metropolis-Hastings

Non-conjugate polynomial regression

Inference Networks for Sequential Monte Carlo in Graphical Models

Figure 4. Representative output in the polynomial regression example. Plots show 100 samples each at 5% opacity, with the mean marked
as a solid dashed line. These are all proposed using the same pre-trained neural network — not just the same neural network structure, but
also identical learned weights. The MCMC posterior is generated by thinning 10000 samples by a factor 100, after 10000 samples of
burnin. The neural network proposal yields estimated polynomial curves close to the true posterior solution, albeit slightly more diffuse.

4.2. A hierarchical Bayesian model

Consider as a new example a representative multilevel
model where exact inference is intractable, a Poisson model
for estimating failure rates of power plant pumps (George
et al., 1993). Given N power plant pumps, each having
operated for tn thousands of hours, we see xn failures, fol-
lowing

↵ ⇠ Exponential(1.0), � ⇠ Gamma(0.1, 1.0),

✓n ⇠ Gamma(↵,�), yn ⇠ Poisson(✓ntn).

The graphical model, an inverse factorization, and the neural
network structure are shown in Figure 2. To generating syn-
thetic training data, tn are sampled iid from an exponential
distribution with mean 50.

The repeated structure in the inverse factorization of this
model allows us to learn a single inverse factor to represent
the distribution p̃(✓n|tn, yn) across all n. This yields a far
simpler learning problem than were we forced to fit all of
p̃(✓1:N |t1:N , y1:N) jointly. Further, the repeated structure

allows us to use a divide-and-conquer SMC algorithm (Lind-
sten et al., 2014) which works particularly efficiently on this
model. Each of the N replicated structures are sampled
in parallel with independent particle sets, weighted locally,
and resampled; once all ✓n are sampled, we end by sam-
pling ↵ and � jointly, which need both be included in order
to evaluate the final terms in the joint target density. We
stress that there is no obvious baseline proposal density to
use for a divide-and-conquer SMC algorithm, as neither the
marginal prior nor posterior distributions over ✓n are avail-
able in closed form. Any usage of this algorithm requires
manual specification of some proposal q(✓n).

We test our proposals on the actual power pump failure data
analyzed in George et al. (1993). The relative convergence
speeds of marginal likelihood estimators from importance
sampling from prior and neural network proposals, and
SMC with neural network proposals, are shown in Figure 5.
To capture the wide tails of the broad gamma distributions,
we use a mixture of 10 Gaussians here at each output node,
and 500 hidden units in each of two hidden layers.

After importance weighting

Inference Networks for Sequential Monte Carlo in Graphical Models

Figure 4. Representative output in the polynomial regression example. Plots show 100 samples each at 5% opacity, with the mean marked
as a solid dashed line. These are all proposed using the same pre-trained neural network — not just the same neural network structure, but
also identical learned weights. The MCMC posterior is generated by thinning 10000 samples by a factor 100, after 10000 samples of
burnin. The neural network proposal yields estimated polynomial curves close to the true posterior solution, albeit slightly more diffuse.

4.2. A hierarchical Bayesian model

Consider as a new example a representative multilevel
model where exact inference is intractable, a Poisson model
for estimating failure rates of power plant pumps (George
et al., 1993). Given N power plant pumps, each having
operated for tn thousands of hours, we see xn failures, fol-
lowing

↵ ⇠ Exponential(1.0), � ⇠ Gamma(0.1, 1.0),

✓n ⇠ Gamma(↵,�), yn ⇠ Poisson(✓ntn).

The graphical model, an inverse factorization, and the neural
network structure are shown in Figure 2. To generating syn-
thetic training data, tn are sampled iid from an exponential
distribution with mean 50.

The repeated structure in the inverse factorization of this
model allows us to learn a single inverse factor to represent
the distribution p̃(✓n|tn, yn) across all n. This yields a far
simpler learning problem than were we forced to fit all of
p̃(✓1:N |t1:N , y1:N) jointly. Further, the repeated structure

allows us to use a divide-and-conquer SMC algorithm (Lind-
sten et al., 2014) which works particularly efficiently on this
model. Each of the N replicated structures are sampled
in parallel with independent particle sets, weighted locally,
and resampled; once all ✓n are sampled, we end by sam-
pling ↵ and � jointly, which need both be included in order
to evaluate the final terms in the joint target density. We
stress that there is no obvious baseline proposal density to
use for a divide-and-conquer SMC algorithm, as neither the
marginal prior nor posterior distributions over ✓n are avail-
able in closed form. Any usage of this algorithm requires
manual specification of some proposal q(✓n).

We test our proposals on the actual power pump failure data
analyzed in George et al. (1993). The relative convergence
speeds of marginal likelihood estimators from importance
sampling from prior and neural network proposals, and
SMC with neural network proposals, are shown in Figure 5.
To capture the wide tails of the broad gamma distributions,
we use a mixture of 10 Gaussians here at each output node,
and 500 hidden units in each of two hidden layers.

Metropolis-Hastings

Non-conjugate polynomial regression

Figure 1: Representative output in the polynomial regression example. Plots show 100
samples each at 5% opacity, with the mean marked as a solid dashed line. These are all
proposed using the same neural network — not just the same neural network structure, but
also identical learned weights. The MCMC posterior is generated by thinning 10000 samples
by a factor 100, after 10000 samples of burnin. The neural network proposal density for the
weights yields estimated polynomial curves very close to the true posterior solution, albeit
slightly more di↵use. Any small mismatch is easily corrected via importance reweighing.

structure are shown in Figure 2. Here we place a Laplace prior on the regression weights,
and have Student-t likelihoods, giving us

wd ⇠ Laplace(0, 101�d) for d = 0, 1, 2;

tn ⇠ t⌫(w0 + w1zn + w2z
2
n, ✏

2) for n = 1, . . . , N

for fixed ⌫ = 4, ✏ = 1, and we place a uniform prior on (�10, 10) for zn. The goal is to
estimate the posterior distribution of weights for the constant, linear, and quadratic terms,
given any possible collected dataset {zn, tn}Nn=1. In the notation of the surrounding sections,
we have latent variables x ⌘ {w0, w1, w2} and observed variables y ⌘ {zn, tn}Nn=1.

8

Non-conjugate polynomial regression

Compilation

Probabilistic program
p0!;y)

Inference

Training data
!!!!); y!!)g

Test data
y

Posterior
p0! j y)

Training #

Expensive / slow Cheap / fast

SIS
NN architecture

Compilation artifact

q0! j y;#)

DKL 0p0! j y) jj
q0! j y;#))

Input: an inference problem denoted in a probabilistic programming language

Output: a trained inference network (deep neural network “compilation artifact”)

Le TA, Baydin AG, Wood F. Inference Compilation and Universal Probabilistic Programming. AISTATS. 2017.

Inference networks for probabilistic programs

• Manually programmed “guide” program?

‣ Intersperse model code and inference

‣ Requires support over the same set of “addresses” of random

choices on every execution

• Automatic?

‣ Use a generic regression model to conditionally generate sequences

of random choices

Amortized inference in higher-order languages?

Generic structured proposal architecture
discuss and demonstrate the brittleness of these regressors.
We demonstrate improved robustness by focusing on and
improving the generative model. In Section IV, we illustrate
the connection of the demonstrated brittleness with Bayesian
model mismatch. We end by explaining how the learned neural
network can be used to perform sample-based approximate
inference.

II. CAPTCHA-BREAKING

Assuming no access to the true Captcha [21] generating
system and a paucity of labeled training data, how does one go
about breaking Captchas? A hint appears in the probabilistic
programming community’s approach to procedural graphics
[22] where a generative model for Captchas is proposed and
then general purpose Markov chain Monte Carlo (MCMC)
Bayesian inference is used to computationally inefficiently
invert the said model. We will make the argument that this
is, effectively, the same as generating synthetic training data
in the manner of Jaderberg et al. [4, 5] to train a neural network
that regresses to the latent Captcha variables. In either case,
developing a flexible, well-calibrated synthetic training data
generator is our first concern.

A. Generating synthetic training data

Our synthetic data generative model for Captcha specifies
joint densities ps(x, y), parameterized by style s, that describe
how to generate both the latent random variable x and the
corresponding Captcha image y. Referring to the first row of
Table I, style s pertains to different schemes (e.g., Baidu, eBay,
Wikipedia, Facebook) involving distinct character ranges,
fonts, kerning, deformations, and noise. Note that in the fol-
lowing equations we omit the style subscript while keeping in
mind that there is a separate unique model for each style. The
latent structured random variable x = {L, ✏1:K , i1:L} includes
L, the number of letters, ✏1:K , a multidimensional structured
parameter set controlling Captcha-rendering parameters such
as kerning and various style-specific deformations, and ii:L,
letter identities. Given these, we use a custom stochastic
Captcha renderer R to generate each Captcha image y, this
renderer and its fidelity being the primary component of the
synthetic data generation effort. The corresponding per-style
synthetic data generator corresponds to the model

x ⇠ p(x) (1)

y|x ⇠ R(x) , (2)

where p(x) is a style-specific prior distribution over the latent
variables including the character identities. For each different
style shown in Table I, we use different settings of the prior
parameters to drive the Captcha renderer. In particular, the
model places style-specific uniform distributions over different
intervals for L, ✏1:K , and i1:L. This is the mechanism for
generating synthetic training data {(x(n), y(n))}. Note that
p(y|x) cannot be evaluated for a given y, rather only sampled.

CNN

LSTM

L

"

i! iL

y

x '

!

"! ""[]

! ! ! !

Output

Input

Sampling

i

Fig. 1. Neural network architecture mapping the Captcha image y to the
latent variables x of interest.

B. Neural network architecture

Our Captcha-breaking neural network is designed taking
into account architectures that have been shown to perform
well on image inputs and variable-length output sequences
[23, 24]. Specifically, we choose a combination of convolu-
tional neural networks (CNNs) and recurrent neural networks.

The core of our neural architecture (Figure 1) is a long short-
term memory (LSTM) network [25], the output of which at
each time step is passed through output layers corresponding
one-to-one to the components of the latent variable x in
the generative model (i.e., number of letters L, rendering
parameters ✏1:K , and letter identities i1:L) that constitute
the inputs to the Captcha renderer. Since the latent variable
x has T = 1 + K + L components, where K is style-
specific and L is instance-specific, the LSTM is run for T
time steps, and we represent by x1:T the components of
the latent x at each time step. The output layers are fully-
connected layers followed by a softmax function, distinct for
each latent variable, that parameterize a discrete probability
distribution. Since the LSTM has a fixed-dimensional output,
these output layers allow us to match the dimensions of the
discrete distributions for the corresponding latent variables.

A CNN is used to embed the Captcha image y into a fixed-
dimensional embedding vector CNN(y). At each time step, the
LSTM input is constructed as the concatenation of the image
embedding CNN(y), the value of the latent variable xt�1 of the
previous time step, and a label vector {0, 1}D corresponding to
each xt. During training, all x1:T are provided to the network
in a way similar to that used by Reed and de Freitas [26], using
the actual values that generated the synthetic image y. At test
time, the values of xt are sampled from the corresponding
discrete probability distribution.

We denote the combined set of parameters of the overall
architecture ✓ and its forward propagation function ⌘, so given
an input y, the output of the softmax layer at time step t corre-
sponding to xt is ⌘✓,t(y). In the running example of Figure 1,
x1 = L, x2:(2+K�1) = ✏1:K , and x(2+K):(2+K+L�1) = i1:L.

t

y(n)

x(n)
x(n)
1 x(n)

2 x(n)
t

· · · · · ·

Generic Structured Proposal Architecture

Re
gr

es
si

on

x(n), y(n) ⇠ p(x, y)
synthetic data

Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997 Nov 15;9(8):1735-80.
Reed S, de Freitas N. Neural programmer-interpreters. arXiv preprint arXiv:1511.06279. 2015 Nov 19.

q =

HOPPL Inf. Comp. Generic Polymorphic Inference Network

observation

embedder

LSTM

time step 1

a_1

instance: 1

address:

type: UniformDiscrete

previous sample embedding: 0

Proposal

layer

… 4 5 6 7 8 9 …

6

proposal:

sample from the proposal:
letters = []
num_letters = sample(Poisson(6))
for i in range(num_letters):
 letters.append(sample(Uniform(“a”,…,”z”,“A”,…,”Z”)))

observe(render(letters), observed_captcha)
return letters

observation

embedding

What does this look like for the CAPTCHA example?

HOPPL Inf. Comp. Generic Polymorphic Inference Network

observation

embedder

LSTM

time step 1

a_1

instance: 1

address:

type: UniformDiscrete

previous sample embedding: 0

Proposal

layer

… 4 5 6 7 8 9 …

6

proposal:

sample from the proposal:

LSTM

time step 2

a_2

1

Uniform

6

Proposal

layer

"q" "a" "o"

“q”
letters = []
num_letters = sample(Poisson(6))
for i in range(num_letters):
 letters.append(sample(Uniform(“a”,…,”z”,“A”,…,”Z”)))

observe(render(letters), observed_captcha)
return letters

// i = 0

observation

embedding

What does this look like for the CAPTCHA example?

HOPPL Inf. Comp. Generic Polymorphic Inference Network

observation

embedder

instance:

address:

type:

previous sample embedding:

proposal:

sample from the proposal:

LSTM

time step 3

a_2

2

Uniform

“q”

Proposal

layer

"s" "S"

“s”
letters = []
num_letters = sample(Poisson(6))
for i in range(num_letters):
 letters.append(sample(Uniform(“a”,…,”z”,“A”,…,”Z”)))

observe(render(letters), observed_captcha)
return letters

LSTM

time step 2

a_2

1

Uniform

6

Proposal

layer

"q" "a" "o"

“q”

…

// i = 1

observation

embedding

What does this look like for the CAPTCHA example?

What does this look like for the CAPTCHA example?HOPPL Inf. Comp. Generic Polymorphic Inference Network

observation

embedder

instance:

address:

type:

previous sample embedding:

proposal:

sample from the proposal:

LSTM

time step 4

a_2

3

Uniform

“s”

Proposal

layer

"X"

“X”
letters = []
num_letters = sample(Poisson(6))
for i in range(num_letters):
 letters.append(sample(Uniform(“a”,…,”z”,“A”,…,”Z”)))

observe(render(letters), observed_captcha)
return letters

… LSTM

time step 3

a_2

2

Uniform

“q”

Proposal

layer

"s" "S"

“s”

// i = 2

observation

embedding

Solving Sudoku with diffusion models

https://plai.cs.ubc.ca/2022/11/16/graphically-structured-diffusion-models/

Writing a good generative
model is hard

Trend In Probabilistic Programming

Probabilistic
Programming ?

Amortized
Inference

Un- and
Semi-

Supervised Deep
Learning

Have fully-specified model?

Inference?

Yes No

One-shot

Repeated

Proposal : Zoubin diagram?

Pyro
http://pyro.ai

http://pyro.ai

• Built on top of Pytorch: based on differentiable programming, and
takes advantage of the existing Python and Pytorch ecosystem

• Idea: define a generative model as a program, and a “inference model”
as a second program

• Assign a “name” to every latent random variable, and make sure that
they line up (be careful if support is unbounded…!)

• Variational Bayes: Optimize the parameters of the “inference model”
so that it approximates the posterior (i.e. by minimizing a KL
divergence)

What kind of a language is Pyro?

Generative model for handwritten digits?

• How do you design a generative model for
images?

z
(h

an
dw

rit
in

g
sty

le)

y (digit label)
Disentangled RepresentationStochastic Computation Graph for VAE

ε z

p

q λ

η

φ n

θ

z

p

q λ

η

φ n

θ

(a) (b) (c) (d)

Figure 2: (a) Visual analogies for the MNIST data, with inferred style latent variable fixed and
the label varied. (b) Exploration in “style” space for a 2D latent gaussian random variable. Visual
analogies for the SVHN data when (c) fully supervised, and (d) partially supervised with just 100
labels/digit.

To train deep generative models in a semi-supervised manner, we need to incorporate labelled data126

into the variational bound. In a fully unsupervised setting, the contribution of a particular data127

point xi to the ELBO can be expressed, with minor adjustments of Equation (1), whose Monte-Carlo128

approximation samples latents z and y from the recognition distribution q�

�
z,y | xi

�
.129

L
�
✓,�;xi

�
= Eq�(z,y|xi)

"
log

p✓

�
xi | z,y

�
p(z,y)

q�(z,y | xi)

#
. (2)

By contrast, in the fully supervised setting the values y are treated as observed and become fixed130

inputs into the computation graph, instead of being sampled from q�. When the label y is observed131

along with the data, for fixed (xi,yi) pairs, the lower bound on the conditional log-marginal likelihood132

log p✓(x | y) is133

Lx|y
�
✓,�z;x

i,yi
�

= Eq�z (z|xi,yi)

"
log

p✓

�
xi | z,yi

�
p
�
z | yi

�

q�z (z | xi,yi)

#
. (3)

This quantity can be optimized directly to learn model parameters ✓ and �z simultaneously via SGD.134

However, it does not contain the encoder parameters �y . This difficulty was also encountered in a135

related context by Kingma et al. [17]. Their solution was to augment the loss function by including136

an explicit additional term for learning a classifier directly on the supervised points.137

Here we propose an alternative approach. We extend the model with an auxiliary variable ỹ with138

likelihood p(ỹ | y) = �ỹ(y) to define densities139

p(ỹ,y, z,x) = p(ỹ | y)p✓(x | y, z)p(y, z)

q(ỹ,y, z | x) = p(ỹ | y)q(y, z | x).

When we marginalize the ELBO for this model over ỹ, we recover the expression in Equation (2).140

Treating ỹ = yi as observed results in the supervised objective141

L
�
✓,�;xi

���
ỹ=yi = Eq�(z,y|xi)

"
�yi(y) log

p✓

�
xi | z,y

�
p(z,y)

q�(z,y | xi)

#
. (4)

Integration over an observed y is then replaced with evaluation of the ELBO and the density q�y at142

yi. A Monte Carlo estimator of Equation (4) can be constructed automatically for any factorization143

of q� by sampling latent variables z and weighting the resulting ELBO estimate by the conditional144

density terms q�y (y|·).145

Note that the exact functional form of the Monte Carlo estimator will vary depending on the146

dependency structure of q�

�
z,y | xi

�
. For example, for discrete y, choosing q�(z,y | x) =147

q�z (z | y,x)q�y (y | x), decomposes the problem into simultaneously learning a classifier148

q�y (y | x) alongside the generative model parameters ✓ and encoder q�z (z|x,y) which is condi-149

tioned on the selected class. The computation graph for a model with this factorization is shown in Fig-150

ure 1. In it, the value y of the distribution q�y (· | x) is observed, while the distribution q�z (· | x,y)151

4

p

λ

y

η

ε

z p

λ

q

ηφ

φ

x (data) y (partial labels)

p

ηθ

q

Recognition Model

z x

y

Generative Model

z x
ε

y

x

Figure 1: Semi-supervised learning in structured variational autoencoders, illustrated on MNIST
digits. Top-Left: Generative model. Bottom-Left: Recognition model. Middle: Stochastic com-
putation graph, showing expansion of each node to its corresponding sub-graph. Generative-model
dependencies are shown in blue and recognition-model dependencies are shown in orange. See
Section 2.2 for a detailed explanation. Right: learned representation.

2 Framework and Formulation

VAEs [16, 27] are a class of deep generative models that simultaneously train both a probabilistic
encoder and decoder for a elements of a data set D = {x1, . . .xN}. The central analogy is that
an encoding z can be considered a latent variable, casting the decoder as a conditional probability
density p✓(x|z). The parameters ⌘✓(z) of this distribution are the output of a deterministic neural
network with parameters ✓ (most commonly MLPs or CNNs) which takes z as input. By placing a
weak prior over z, the decoder defines a posterior and joint distribution p✓(z | x) / p✓(x | z)p(z).

xn

zn ✓�

N

Inference in VAEs can be performed using a variational method that approximates the
posterior distribution p✓(z | x) using an encoder q�(z | x), whose parameters ��(x) are
the output of a network (with parameters �) that is referred to as an “inference network”
or a “recognition network”. The generative and inference networks, denoted by solid
and dashed lines respectively in the graphical model, are trained jointly by performing
stochastic gradient ascent on the evidence lower bound (ELBO) L(�, ✓; D)  log p✓(D),

L(�, ✓; D) =
NX

n=1

L(�, ✓;xn) =
NX

n=1

Eq�(z|xn)[log p✓(x
n | z) + log p(z) � log q�(z|xn)]. (1)

Typically, the first term Eq�(z|xn)[log p✓(xn | z)] is approximated by a Monte Carlo estimate and the
remaining two terms are expressed as a divergence �KL(q�(z|xn)kp(z)), which can be computed
analytically when the encoder model and prior are Gaussian.

In this paper, we will consider models in which both the generative model p✓(x,y, z) and the
approximate posterior q�(y, z | x) can have arbitrary conditional dependency structures involving
random variables defined over a number of different distribution types. We are interested in defining
VAE architectures in which a subset of variables y are interpretable. For these variables, we assume
that supervision labels are available for some fraction of the data. The VAE will additionally retain
some set of variables z for which inference is performed in a fully unsupervised manner. This is in
keeping with our central goal of defining and learning in partially-specified models. In the running
example for MNIST, y corresponds to the classification label, whereas z captures all other implicit
features, such as the pen type and handwriting style.

This class of models is more general than the models in the work by Kingma et al. [17], who consider
three model designs with a specific conditional dependence structure. We also do not require p(y, z)
to be a conjugate exponential family model, as in the work by Johnson et al. [14]. To perform
semi-supervised learning in this class of models, we need to i) define an objective that is suitable to
general dependency graphs, and ii) define a method for constructing a stochastic computation graph
[29] that incorporates both the conditional dependence structure in the generative model and that of
the recognition model into this objective.

3

Latent

Pixels

Learning deep generative models
Generative model

(decoder)

latent

representation

z

p✓(xn|zn)p(zn)

Inference
(encoder, guide)

µ, Σ

q�(zn|xn)

Kingma & Welling 2014; Rezende et al. 2014

Incomprehensible Latent Variable

Disentangled representations

(a) (b) (c) (d)

Figure 2: (a) Visual analogies for the MNIST data, partially supervised with just 100 labels (out of
50000). We infer the style variable z and then vary the label y. (b) Exploration in style space with
label y held fixed and (2D) style z varied. Visual analogies for the SVHN data when (c) partially
supervised with just 1000 labels, and (d) fully supervised.

3 Experiments

We evaluate our framework along a number of different axes pertaining to its ability to learn disentan-
gled representations through the provision of partial graphical-model structures for the latents and
weak supervision. In particular, we evaluate its ability to (i) function as a classifier/regressor for
particular latents under the given dataset, (ii) learn the generative model in a manner that preserves
the semantics of the latents with respect to the data generated, and (iii) perform these tasks, in a
flexible manner, for a variety of different models and data.

For all the experiments run, we choose architecture and parameters that are considered standard
for the type and size of the respective datasets. Where images are concerned (with the exception
of MNIST), we employ (de)convolutional architectures, and employ a standard GRU recurrence
in the Multi-MNIST case. For learning, we used AdaM [15] with a learning rate and momentum-
correction terms set to their default values. As for the mini batch sizes, they varied from 100-700
depending on the dataset being used and the sizes of the labelled subset Dsup. All of the above,
including further details of precise parameter values and the source code, including our PyTorch-
based library for specifying arbitrary graphical models in the VAE framework, is available at –
https://github.com/probtorch/probtorch.

3.1 MNIST and SVHN

We begin with an experiment involving a simple dependency structure, in fact the very same as that
in Kingma et al. [17], to validate the performance of our importance-sampled objective in the special
case where the recognition network and generative models factorise as indicated in Fig. 1(left), giving
us importance weights that are constant wm,s = q�(ym|xm). The model is tested on it’s ability to
classify digits and perform conditional generation on the MNIST and Google Street-View House
Numbers (SVHN) datasets. As Fig. 1(left) shows, the generative and recognition models have the
“digit” label, denoted y, partially specified (and partially supervised) and the “style” factor, denoted
z, assumed to be an unobserved (and unsupervised) variable.

Figure 2(a) and (c) illustrate the conditional generation capabilities of the learned model, where we
show the effect of first transforming a given input (leftmost column) into the disentangled latent
space, and with the style latent variable fixed, manipulating the digit through the generative model to
generate data with expected visual characteristics. Note that both these results were obtained with
partial supervision – 100 (out of 50000) labelled data points in the case of MNIST and 1000 (out
of 70000) labelled data points in the case of SVHN. The style latent variable z was taken to be a
diagonal-covariance Gaussian of 10 and 15 dimensions respectively. Figure 2(d) shows the same for
SVHN with full supervision. Figure 2(b) illustrates the alternate mode of conditional generation,
where the style latent, here taken to be a 2D Gaussian, is varied with the digit held fixed.

Next, we evaluate our model’s ability to effectively learn a classifier from partial supervision. We
compute the classification error on the label-prediction task on both datasets, and the results are
reported in the table in Fig. 3. Note that there are a few minor points of difference in the setup
between our method and those we compare against [17]. We always run our models directly on the
data, with no pre-processing or pre-learning on the data. Thus, for MNIST, we compare against

6

“Interpretable” (digit)

Unexplained 
variation

(“nuisance”)

z
(h

an
dw

rit
in

g
sty

le)

y (digit label)
Disentangled RepresentationStochastic Computation Graph for VAE

ε z

p

q λ

η

φ n

θ

z

p

q λ

η

φ n

θ

(a) (b) (c) (d)

Figure 2: (a) Visual analogies for the MNIST data, with inferred style latent variable fixed and
the label varied. (b) Exploration in “style” space for a 2D latent gaussian random variable. Visual
analogies for the SVHN data when (c) fully supervised, and (d) partially supervised with just 100
labels/digit.

To train deep generative models in a semi-supervised manner, we need to incorporate labelled data126

into the variational bound. In a fully unsupervised setting, the contribution of a particular data127

point xi to the ELBO can be expressed, with minor adjustments of Equation (1), whose Monte-Carlo128

approximation samples latents z and y from the recognition distribution q�

�
z,y | xi

�
.129

L
�
✓,�;xi

�
= Eq�(z,y|xi)

"
log

p✓

�
xi | z,y

�
p(z,y)

q�(z,y | xi)

#
. (2)

By contrast, in the fully supervised setting the values y are treated as observed and become fixed130

inputs into the computation graph, instead of being sampled from q�. When the label y is observed131

along with the data, for fixed (xi,yi) pairs, the lower bound on the conditional log-marginal likelihood132

log p✓(x | y) is133

Lx|y
�
✓,�z;x

i,yi
�

= Eq�z (z|xi,yi)

"
log

p✓

�
xi | z,yi

�
p
�
z | yi

�

q�z (z | xi,yi)

#
. (3)

This quantity can be optimized directly to learn model parameters ✓ and �z simultaneously via SGD.134

However, it does not contain the encoder parameters �y . This difficulty was also encountered in a135

related context by Kingma et al. [17]. Their solution was to augment the loss function by including136

an explicit additional term for learning a classifier directly on the supervised points.137

Here we propose an alternative approach. We extend the model with an auxiliary variable ỹ with138

likelihood p(ỹ | y) = �ỹ(y) to define densities139

p(ỹ,y, z,x) = p(ỹ | y)p✓(x | y, z)p(y, z)

q(ỹ,y, z | x) = p(ỹ | y)q(y, z | x).

When we marginalize the ELBO for this model over ỹ, we recover the expression in Equation (2).140

Treating ỹ = yi as observed results in the supervised objective141

L
�
✓,�;xi

���
ỹ=yi = Eq�(z,y|xi)

"
�yi(y) log

p✓

�
xi | z,y

�
p(z,y)

q�(z,y | xi)

#
. (4)

Integration over an observed y is then replaced with evaluation of the ELBO and the density q�y at142

yi. A Monte Carlo estimator of Equation (4) can be constructed automatically for any factorization143

of q� by sampling latent variables z and weighting the resulting ELBO estimate by the conditional144

density terms q�y (y|·).145

Note that the exact functional form of the Monte Carlo estimator will vary depending on the146

dependency structure of q�

�
z,y | xi

�
. For example, for discrete y, choosing q�(z,y | x) =147

q�z (z | y,x)q�y (y | x), decomposes the problem into simultaneously learning a classifier148

q�y (y | x) alongside the generative model parameters ✓ and encoder q�z (z|x,y) which is condi-149

tioned on the selected class. The computation graph for a model with this factorization is shown in Fig-150

ure 1. In it, the value y of the distribution q�y (· | x) is observed, while the distribution q�z (· | x,y)151

4

p

λ

y

η

ε

z p

λ

q

ηφ

φ

x (data) y (partial labels)

p

ηθ

q

Recognition Model

z x

y

Generative Model

z x
ε

y

x

Figure 1: Semi-supervised learning in structured variational autoencoders, illustrated on MNIST
digits. Top-Left: Generative model. Bottom-Left: Recognition model. Middle: Stochastic com-
putation graph, showing expansion of each node to its corresponding sub-graph. Generative-model
dependencies are shown in blue and recognition-model dependencies are shown in orange. See
Section 2.2 for a detailed explanation. Right: learned representation.

2 Framework and Formulation

VAEs [16, 27] are a class of deep generative models that simultaneously train both a probabilistic
encoder and decoder for a elements of a data set D = {x1, . . .xN}. The central analogy is that
an encoding z can be considered a latent variable, casting the decoder as a conditional probability
density p✓(x|z). The parameters ⌘✓(z) of this distribution are the output of a deterministic neural
network with parameters ✓ (most commonly MLPs or CNNs) which takes z as input. By placing a
weak prior over z, the decoder defines a posterior and joint distribution p✓(z | x) / p✓(x | z)p(z).

xn

zn ✓�

N

Inference in VAEs can be performed using a variational method that approximates the
posterior distribution p✓(z | x) using an encoder q�(z | x), whose parameters ��(x) are
the output of a network (with parameters �) that is referred to as an “inference network”
or a “recognition network”. The generative and inference networks, denoted by solid
and dashed lines respectively in the graphical model, are trained jointly by performing
stochastic gradient ascent on the evidence lower bound (ELBO) L(�, ✓; D)  log p✓(D),

L(�, ✓; D) =
NX

n=1

L(�, ✓;xn) =
NX

n=1

Eq�(z|xn)[log p✓(x
n | z) + log p(z) � log q�(z|xn)]. (1)

Typically, the first term Eq�(z|xn)[log p✓(xn | z)] is approximated by a Monte Carlo estimate and the
remaining two terms are expressed as a divergence �KL(q�(z|xn)kp(z)), which can be computed
analytically when the encoder model and prior are Gaussian.

In this paper, we will consider models in which both the generative model p✓(x,y, z) and the
approximate posterior q�(y, z | x) can have arbitrary conditional dependency structures involving
random variables defined over a number of different distribution types. We are interested in defining
VAE architectures in which a subset of variables y are interpretable. For these variables, we assume
that supervision labels are available for some fraction of the data. The VAE will additionally retain
some set of variables z for which inference is performed in a fully unsupervised manner. This is in
keeping with our central goal of defining and learning in partially-specified models. In the running
example for MNIST, y corresponds to the classification label, whereas z captures all other implicit
features, such as the pen type and handwriting style.

This class of models is more general than the models in the work by Kingma et al. [17], who consider
three model designs with a specific conditional dependence structure. We also do not require p(y, z)
to be a conjugate exponential family model, as in the work by Johnson et al. [14]. To perform
semi-supervised learning in this class of models, we need to i) define an objective that is suitable to
general dependency graphs, and ii) define a method for constructing a stochastic computation graph
[29] that incorporates both the conditional dependence structure in the generative model and that of
the recognition model into this objective.

3

Disentangled representations
Separate interpretable y

from nuisance variables z

Kingma et al, Semi-supervised learning with deep generative models, NIPS 2014

Siddharth et al., Learning disentangled representations with semi-supervised deep generative models, NIPS 2017

Inference: predict label y
from pixels x, and then

predict z from x and y

MNIST with (some) Supervision

(a) (b) (c) (d)

Figure 2: (a) Visual analogies for the MNIST data, with inferred style latent variable fixed and
the label varied. (b) Exploration in “style” space for a 2D latent gaussian random variable. Visual
analogies for the SVHN data when (c) fully supervised, and (d) partially supervised with just 100
labels/digit.

To train deep generative models in a semi-supervised manner, we need to incorporate labelled data126

into the variational bound. In a fully unsupervised setting, the contribution of a particular data127

point xi to the ELBO can be expressed, with minor adjustments of Equation (1), whose Monte-Carlo128

approximation samples latents z and y from the recognition distribution q�
�
z,y | xi

�
.129

L
�
✓,�;xi

�
= Eq�(z,y|xi)

"
log

p✓
�
xi | z,y

�
p(z,y)

q�(z,y | xi)

#
. (2)

By contrast, in the fully supervised setting the values y are treated as observed and become fixed130

inputs into the computation graph, instead of being sampled from q�. When the label y is observed131

along with the data, for fixed (xi,yi) pairs, the lower bound on the conditional log-marginal likelihood132

log p✓(x | y) is133

Lx|y
�
✓,�z;x

i,yi
�
= Eq�z (z|xi,yi)

"
log

p✓
�
xi | z,yi

�
p
�
z | yi

�

q�z (z | xi,yi)

#
. (3)

This quantity can be optimized directly to learn model parameters ✓ and �z simultaneously via SGD.134

However, it does not contain the encoder parameters �y . This difficulty was also encountered in a135

related context by Kingma et al. [17]. Their solution was to augment the loss function by including136

an explicit additional term for learning a classifier directly on the supervised points.137

Here we propose an alternative approach. We extend the model with an auxiliary variable ỹ with138

likelihood p(ỹ | y) = �ỹ(y) to define densities139

p(ỹ,y, z,x) = p(ỹ | y)p✓(x | y, z)p(y, z)
q(ỹ,y, z | x) = p(ỹ | y)q(y, z | x).

When we marginalize the ELBO for this model over ỹ, we recover the expression in Equation (2).140

Treating ỹ = yi as observed results in the supervised objective141

L
�
✓,�;xi

���
ỹ=yi = Eq�(z,y|xi)

"
�yi(y) log

p✓
�
xi | z,y

�
p(z,y)

q�(z,y | xi)

#
. (4)

Integration over an observed y is then replaced with evaluation of the ELBO and the density q�y at142

yi. A Monte Carlo estimator of Equation (4) can be constructed automatically for any factorization143

of q� by sampling latent variables z and weighting the resulting ELBO estimate by the conditional144

density terms q�y (y|·).145

Note that the exact functional form of the Monte Carlo estimator will vary depending on the146

dependency structure of q�
�
z,y | xi

�
. For example, for discrete y, choosing q�(z,y | x) =147

q�z (z | y,x)q�y (y | x), decomposes the problem into simultaneously learning a classifier148

q�y (y | x) alongside the generative model parameters ✓ and encoder q�z (z|x,y) which is condi-149

tioned on the selected class. The computation graph for a model with this factorization is shown in Fig-150

ure 1. In it, the value y of the distribution q�y (· | x) is observed, while the distribution q�z (· | x,y)151

4

z
(h

an
dw

rit
in

g
sty

le)

y (digit label)
Disentangled RepresentationStochastic Computation Graph for VAE

ε z

p

q λ

η

φ n

θ

z

p

q λ

η

φ n

θ

(a) (b) (c) (d)

Figure 2: (a) Visual analogies for the MNIST data, with inferred style latent variable fixed and
the label varied. (b) Exploration in “style” space for a 2D latent gaussian random variable. Visual
analogies for the SVHN data when (c) fully supervised, and (d) partially supervised with just 100
labels/digit.

To train deep generative models in a semi-supervised manner, we need to incorporate labelled data126

into the variational bound. In a fully unsupervised setting, the contribution of a particular data127

point xi to the ELBO can be expressed, with minor adjustments of Equation (1), whose Monte-Carlo128

approximation samples latents z and y from the recognition distribution q�
�
z,y | xi

�
.129

L
�
✓,�;xi

�
= Eq�(z,y|xi)

"
log

p✓
�
xi | z,y

�
p(z,y)

q�(z,y | xi)

#
. (2)

By contrast, in the fully supervised setting the values y are treated as observed and become fixed130

inputs into the computation graph, instead of being sampled from q�. When the label y is observed131

along with the data, for fixed (xi,yi) pairs, the lower bound on the conditional log-marginal likelihood132

log p✓(x | y) is133

Lx|y
�
✓,�z;x

i,yi
�
= Eq�z (z|xi,yi)

"
log

p✓
�
xi | z,yi

�
p
�
z | yi

�

q�z (z | xi,yi)

#
. (3)

This quantity can be optimized directly to learn model parameters ✓ and �z simultaneously via SGD.134

However, it does not contain the encoder parameters �y . This difficulty was also encountered in a135

related context by Kingma et al. [17]. Their solution was to augment the loss function by including136

an explicit additional term for learning a classifier directly on the supervised points.137

Here we propose an alternative approach. We extend the model with an auxiliary variable ỹ with138

likelihood p(ỹ | y) = �ỹ(y) to define densities139

p(ỹ,y, z,x) = p(ỹ | y)p✓(x | y, z)p(y, z)
q(ỹ,y, z | x) = p(ỹ | y)q(y, z | x).

When we marginalize the ELBO for this model over ỹ, we recover the expression in Equation (2).140

Treating ỹ = yi as observed results in the supervised objective141

L
�
✓,�;xi

���
ỹ=yi = Eq�(z,y|xi)

"
�yi(y) log

p✓
�
xi | z,y

�
p(z,y)

q�(z,y | xi)

#
. (4)

Integration over an observed y is then replaced with evaluation of the ELBO and the density q�y at142

yi. A Monte Carlo estimator of Equation (4) can be constructed automatically for any factorization143

of q� by sampling latent variables z and weighting the resulting ELBO estimate by the conditional144

density terms q�y (y|·).145

Note that the exact functional form of the Monte Carlo estimator will vary depending on the146

dependency structure of q�
�
z,y | xi

�
. For example, for discrete y, choosing q�(z,y | x) =147

q�z (z | y,x)q�y (y | x), decomposes the problem into simultaneously learning a classifier148

q�y (y | x) alongside the generative model parameters ✓ and encoder q�z (z|x,y) which is condi-149

tioned on the selected class. The computation graph for a model with this factorization is shown in Fig-150

ure 1. In it, the value y of the distribution q�y (· | x) is observed, while the distribution q�z (· | x,y)151

4

p

λ

y

η

ε

z p

λ

q

ηφ

φ

x (data) y (partial labels)

p

ηθ

q

Recognition Model

z x

y

Generative Model

z x
ε

y

x

Separate interpretable y  
from “nuisance” variables z

Disentangled  
Representation

(a) (b) (c) (d)

Figure 2: (a) Visual analogies for the MNIST data, with inferred style latent variable fixed and
the label varied. (b) Exploration in “style” space for a 2D latent gaussian random variable. Visual
analogies for the SVHN data when (c) fully supervised, and (d) partially supervised with just 100
labels/digit.

To train deep generative models in a semi-supervised manner, we need to incorporate labelled data126

into the variational bound. In a fully unsupervised setting, the contribution of a particular data127

point xi to the ELBO can be expressed, with minor adjustments of Equation (1), whose Monte-Carlo128

approximation samples latents z and y from the recognition distribution q�
�
z,y | xi

�
.129

L
�
✓,�;xi

�
= Eq�(z,y|xi)

"
log

p✓
�
xi | z,y

�
p(z,y)

q�(z,y | xi)

#
. (2)

By contrast, in the fully supervised setting the values y are treated as observed and become fixed130

inputs into the computation graph, instead of being sampled from q�. When the label y is observed131

along with the data, for fixed (xi,yi) pairs, the lower bound on the conditional log-marginal likelihood132

log p✓(x | y) is133

Lx|y
�
✓,�z;x

i,yi
�
= Eq�z (z|xi,yi)

"
log

p✓
�
xi | z,yi

�
p
�
z | yi

�

q�z (z | xi,yi)

#
. (3)

This quantity can be optimized directly to learn model parameters ✓ and �z simultaneously via SGD.134

However, it does not contain the encoder parameters �y . This difficulty was also encountered in a135

related context by Kingma et al. [17]. Their solution was to augment the loss function by including136

an explicit additional term for learning a classifier directly on the supervised points.137

Here we propose an alternative approach. We extend the model with an auxiliary variable ỹ with138

likelihood p(ỹ | y) = �ỹ(y) to define densities139

p(ỹ,y, z,x) = p(ỹ | y)p✓(x | y, z)p(y, z)
q(ỹ,y, z | x) = p(ỹ | y)q(y, z | x).

When we marginalize the ELBO for this model over ỹ, we recover the expression in Equation (2).140

Treating ỹ = yi as observed results in the supervised objective141

L
�
✓,�;xi

���
ỹ=yi = Eq�(z,y|xi)

"
�yi(y) log

p✓
�
xi | z,y

�
p(z,y)

q�(z,y | xi)

#
. (4)

Integration over an observed y is then replaced with evaluation of the ELBO and the density q�y at142

yi. A Monte Carlo estimator of Equation (4) can be constructed automatically for any factorization143

of q� by sampling latent variables z and weighting the resulting ELBO estimate by the conditional144

density terms q�y (y|·).145

Note that the exact functional form of the Monte Carlo estimator will vary depending on the146

dependency structure of q�
�
z,y | xi

�
. For example, for discrete y, choosing q�(z,y | x) =147

q�z (z | y,x)q�y (y | x), decomposes the problem into simultaneously learning a classifier148

q�y (y | x) alongside the generative model parameters ✓ and encoder q�z (z|x,y) which is condi-149

tioned on the selected class. The computation graph for a model with this factorization is shown in Fig-150

ure 1. In it, the value y of the distribution q�y (· | x) is observed, while the distribution q�z (· | x,y)151

4

z
(h

an
dw

rit
in

g
sty

le)

y (digit label)
Disentangled RepresentationStochastic Computation Graph for VAE

ε z

p

q λ

η

φ n

θ

z

p

q λ

η

φ n

θ

(a) (b) (c) (d)

Figure 2: (a) Visual analogies for the MNIST data, with inferred style latent variable fixed and
the label varied. (b) Exploration in “style” space for a 2D latent gaussian random variable. Visual
analogies for the SVHN data when (c) fully supervised, and (d) partially supervised with just 100
labels/digit.

To train deep generative models in a semi-supervised manner, we need to incorporate labelled data126

into the variational bound. In a fully unsupervised setting, the contribution of a particular data127

point xi to the ELBO can be expressed, with minor adjustments of Equation (1), whose Monte-Carlo128

approximation samples latents z and y from the recognition distribution q�
�
z,y | xi

�
.129

L
�
✓,�;xi

�
= Eq�(z,y|xi)

"
log

p✓
�
xi | z,y

�
p(z,y)

q�(z,y | xi)

#
. (2)

By contrast, in the fully supervised setting the values y are treated as observed and become fixed130

inputs into the computation graph, instead of being sampled from q�. When the label y is observed131

along with the data, for fixed (xi,yi) pairs, the lower bound on the conditional log-marginal likelihood132

log p✓(x | y) is133

Lx|y
�
✓,�z;x

i,yi
�
= Eq�z (z|xi,yi)

"
log

p✓
�
xi | z,yi

�
p
�
z | yi

�

q�z (z | xi,yi)

#
. (3)

This quantity can be optimized directly to learn model parameters ✓ and �z simultaneously via SGD.134

However, it does not contain the encoder parameters �y . This difficulty was also encountered in a135

related context by Kingma et al. [17]. Their solution was to augment the loss function by including136

an explicit additional term for learning a classifier directly on the supervised points.137

Here we propose an alternative approach. We extend the model with an auxiliary variable ỹ with138

likelihood p(ỹ | y) = �ỹ(y) to define densities139

p(ỹ,y, z,x) = p(ỹ | y)p✓(x | y, z)p(y, z)
q(ỹ,y, z | x) = p(ỹ | y)q(y, z | x).

When we marginalize the ELBO for this model over ỹ, we recover the expression in Equation (2).140

Treating ỹ = yi as observed results in the supervised objective141

L
�
✓,�;xi

���
ỹ=yi = Eq�(z,y|xi)

"
�yi(y) log

p✓
�
xi | z,y

�
p(z,y)

q�(z,y | xi)

#
. (4)

Integration over an observed y is then replaced with evaluation of the ELBO and the density q�y at142

yi. A Monte Carlo estimator of Equation (4) can be constructed automatically for any factorization143

of q� by sampling latent variables z and weighting the resulting ELBO estimate by the conditional144

density terms q�y (y|·).145

Note that the exact functional form of the Monte Carlo estimator will vary depending on the146

dependency structure of q�
�
z,y | xi

�
. For example, for discrete y, choosing q�(z,y | x) =147

q�z (z | y,x)q�y (y | x), decomposes the problem into simultaneously learning a classifier148

q�y (y | x) alongside the generative model parameters ✓ and encoder q�z (z|x,y) which is condi-149

tioned on the selected class. The computation graph for a model with this factorization is shown in Fig-150

ure 1. In it, the value y of the distribution q�y (· | x) is observed, while the distribution q�z (· | x,y)151

4

p

λ

y

η

ε

z p

λ

q

ηφ

φ

x (data) y (partial labels)

p

ηθ

q

Recognition Model

z x

y

Generative Model

z x
ε

y

x

Predict y from pixels x, 
then predict z from y and x

Probabilistic Encoder

(a) (b) (c) (d)

Figure 2: (a) Visual analogies for the MNIST data, with inferred style latent variable fixed and
the label varied. (b) Exploration in “style” space for a 2D latent gaussian random variable. Visual
analogies for the SVHN data when (c) fully supervised, and (d) partially supervised with just 100
labels/digit.

To train deep generative models in a semi-supervised manner, we need to incorporate labelled data126

into the variational bound. In a fully unsupervised setting, the contribution of a particular data127

point xi to the ELBO can be expressed, with minor adjustments of Equation (1), whose Monte-Carlo128

approximation samples latents z and y from the recognition distribution q�
�
z,y | xi

�
.129

L
�
✓,�;xi

�
= Eq�(z,y|xi)

"
log

p✓
�
xi | z,y

�
p(z,y)

q�(z,y | xi)

#
. (2)

By contrast, in the fully supervised setting the values y are treated as observed and become fixed130

inputs into the computation graph, instead of being sampled from q�. When the label y is observed131

along with the data, for fixed (xi,yi) pairs, the lower bound on the conditional log-marginal likelihood132

log p✓(x | y) is133

Lx|y
�
✓,�z;x

i,yi
�
= Eq�z (z|xi,yi)

"
log

p✓
�
xi | z,yi

�
p
�
z | yi

�

q�z (z | xi,yi)

#
. (3)

This quantity can be optimized directly to learn model parameters ✓ and �z simultaneously via SGD.134

However, it does not contain the encoder parameters �y . This difficulty was also encountered in a135

related context by Kingma et al. [17]. Their solution was to augment the loss function by including136

an explicit additional term for learning a classifier directly on the supervised points.137

Here we propose an alternative approach. We extend the model with an auxiliary variable ỹ with138

likelihood p(ỹ | y) = �ỹ(y) to define densities139

p(ỹ,y, z,x) = p(ỹ | y)p✓(x | y, z)p(y, z)
q(ỹ,y, z | x) = p(ỹ | y)q(y, z | x).

When we marginalize the ELBO for this model over ỹ, we recover the expression in Equation (2).140

Treating ỹ = yi as observed results in the supervised objective141

L
�
✓,�;xi

���
ỹ=yi = Eq�(z,y|xi)

"
�yi(y) log

p✓
�
xi | z,y

�
p(z,y)

q�(z,y | xi)

#
. (4)

Integration over an observed y is then replaced with evaluation of the ELBO and the density q�y at142

yi. A Monte Carlo estimator of Equation (4) can be constructed automatically for any factorization143

of q� by sampling latent variables z and weighting the resulting ELBO estimate by the conditional144

density terms q�y (y|·).145

Note that the exact functional form of the Monte Carlo estimator will vary depending on the146

dependency structure of q�
�
z,y | xi

�
. For example, for discrete y, choosing q�(z,y | x) =147

q�z (z | y,x)q�y (y | x), decomposes the problem into simultaneously learning a classifier148

q�y (y | x) alongside the generative model parameters ✓ and encoder q�z (z|x,y) which is condi-149

tioned on the selected class. The computation graph for a model with this factorization is shown in Fig-150

ure 1. In it, the value y of the distribution q�y (· | x) is observed, while the distribution q�z (· | x,y)151

4

z
(h

an
dw

rit
in

g
sty

le)

y (digit label)
Disentangled RepresentationStochastic Computation Graph for VAE

ε z

p

q λ

η

φ n

θ

z

p

q λ

η

φ n

θ

(a) (b) (c) (d)

Figure 2: (a) Visual analogies for the MNIST data, with inferred style latent variable fixed and
the label varied. (b) Exploration in “style” space for a 2D latent gaussian random variable. Visual
analogies for the SVHN data when (c) fully supervised, and (d) partially supervised with just 100
labels/digit.

To train deep generative models in a semi-supervised manner, we need to incorporate labelled data126

into the variational bound. In a fully unsupervised setting, the contribution of a particular data127

point xi to the ELBO can be expressed, with minor adjustments of Equation (1), whose Monte-Carlo128

approximation samples latents z and y from the recognition distribution q�
�
z,y | xi

�
.129

L
�
✓,�;xi

�
= Eq�(z,y|xi)

"
log

p✓
�
xi | z,y

�
p(z,y)

q�(z,y | xi)

#
. (2)

By contrast, in the fully supervised setting the values y are treated as observed and become fixed130

inputs into the computation graph, instead of being sampled from q�. When the label y is observed131

along with the data, for fixed (xi,yi) pairs, the lower bound on the conditional log-marginal likelihood132

log p✓(x | y) is133

Lx|y
�
✓,�z;x

i,yi
�
= Eq�z (z|xi,yi)

"
log

p✓
�
xi | z,yi

�
p
�
z | yi

�

q�z (z | xi,yi)

#
. (3)

This quantity can be optimized directly to learn model parameters ✓ and �z simultaneously via SGD.134

However, it does not contain the encoder parameters �y . This difficulty was also encountered in a135

related context by Kingma et al. [17]. Their solution was to augment the loss function by including136

an explicit additional term for learning a classifier directly on the supervised points.137

Here we propose an alternative approach. We extend the model with an auxiliary variable ỹ with138

likelihood p(ỹ | y) = �ỹ(y) to define densities139

p(ỹ,y, z,x) = p(ỹ | y)p✓(x | y, z)p(y, z)
q(ỹ,y, z | x) = p(ỹ | y)q(y, z | x).

When we marginalize the ELBO for this model over ỹ, we recover the expression in Equation (2).140

Treating ỹ = yi as observed results in the supervised objective141

L
�
✓,�;xi

���
ỹ=yi = Eq�(z,y|xi)

"
�yi(y) log

p✓
�
xi | z,y

�
p(z,y)

q�(z,y | xi)

#
. (4)

Integration over an observed y is then replaced with evaluation of the ELBO and the density q�y at142

yi. A Monte Carlo estimator of Equation (4) can be constructed automatically for any factorization143

of q� by sampling latent variables z and weighting the resulting ELBO estimate by the conditional144

density terms q�y (y|·).145

Note that the exact functional form of the Monte Carlo estimator will vary depending on the146

dependency structure of q�
�
z,y | xi

�
. For example, for discrete y, choosing q�(z,y | x) =147

q�z (z | y,x)q�y (y | x), decomposes the problem into simultaneously learning a classifier148

q�y (y | x) alongside the generative model parameters ✓ and encoder q�z (z|x,y) which is condi-149

tioned on the selected class. The computation graph for a model with this factorization is shown in Fig-150

ure 1. In it, the value y of the distribution q�y (· | x) is observed, while the distribution q�z (· | x,y)151

4

p

λ

y

η

ε

z p

λ

q

ηφ

φ

x (data) y (partial labels)

p

ηθ

q

Recognition Model

z x

y

Generative Model

z x
ε

y

x

Predict pixels x  
from y and z

Probabilistic Decoder

Generative model:  
predict pixels x 

from y and z

MNIST with (some) Supervision

(a) (b) (c) (d)

Figure 2: (a) Visual analogies for the MNIST data, with inferred style latent variable fixed and
the label varied. (b) Exploration in “style” space for a 2D latent gaussian random variable. Visual
analogies for the SVHN data when (c) fully supervised, and (d) partially supervised with just 100
labels/digit.

To train deep generative models in a semi-supervised manner, we need to incorporate labelled data126

into the variational bound. In a fully unsupervised setting, the contribution of a particular data127

point xi to the ELBO can be expressed, with minor adjustments of Equation (1), whose Monte-Carlo128

approximation samples latents z and y from the recognition distribution q�
�
z,y | xi

�
.129

L
�
✓,�;xi

�
= Eq�(z,y|xi)

"
log

p✓
�
xi | z,y

�
p(z,y)

q�(z,y | xi)

#
. (2)

By contrast, in the fully supervised setting the values y are treated as observed and become fixed130

inputs into the computation graph, instead of being sampled from q�. When the label y is observed131

along with the data, for fixed (xi,yi) pairs, the lower bound on the conditional log-marginal likelihood132

log p✓(x | y) is133

Lx|y
�
✓,�z;x

i,yi
�
= Eq�z (z|xi,yi)

"
log

p✓
�
xi | z,yi

�
p
�
z | yi

�

q�z (z | xi,yi)

#
. (3)

This quantity can be optimized directly to learn model parameters ✓ and �z simultaneously via SGD.134

However, it does not contain the encoder parameters �y . This difficulty was also encountered in a135

related context by Kingma et al. [17]. Their solution was to augment the loss function by including136

an explicit additional term for learning a classifier directly on the supervised points.137

Here we propose an alternative approach. We extend the model with an auxiliary variable ỹ with138

likelihood p(ỹ | y) = �ỹ(y) to define densities139

p(ỹ,y, z,x) = p(ỹ | y)p✓(x | y, z)p(y, z)
q(ỹ,y, z | x) = p(ỹ | y)q(y, z | x).

When we marginalize the ELBO for this model over ỹ, we recover the expression in Equation (2).140

Treating ỹ = yi as observed results in the supervised objective141

L
�
✓,�;xi

���
ỹ=yi = Eq�(z,y|xi)

"
�yi(y) log

p✓
�
xi | z,y

�
p(z,y)

q�(z,y | xi)

#
. (4)

Integration over an observed y is then replaced with evaluation of the ELBO and the density q�y at142

yi. A Monte Carlo estimator of Equation (4) can be constructed automatically for any factorization143

of q� by sampling latent variables z and weighting the resulting ELBO estimate by the conditional144

density terms q�y (y|·).145

Note that the exact functional form of the Monte Carlo estimator will vary depending on the146

dependency structure of q�
�
z,y | xi

�
. For example, for discrete y, choosing q�(z,y | x) =147

q�z (z | y,x)q�y (y | x), decomposes the problem into simultaneously learning a classifier148

q�y (y | x) alongside the generative model parameters ✓ and encoder q�z (z|x,y) which is condi-149

tioned on the selected class. The computation graph for a model with this factorization is shown in Fig-150

ure 1. In it, the value y of the distribution q�y (· | x) is observed, while the distribution q�z (· | x,y)151

4

z
(h

an
dw

rit
in

g
sty

le)

y (digit label)
Disentangled RepresentationStochastic Computation Graph for VAE

ε z

p

q λ

η

φ n

θ

z

p

q λ

η

φ n

θ

(a) (b) (c) (d)

Figure 2: (a) Visual analogies for the MNIST data, with inferred style latent variable fixed and
the label varied. (b) Exploration in “style” space for a 2D latent gaussian random variable. Visual
analogies for the SVHN data when (c) fully supervised, and (d) partially supervised with just 100
labels/digit.

To train deep generative models in a semi-supervised manner, we need to incorporate labelled data126

into the variational bound. In a fully unsupervised setting, the contribution of a particular data127

point xi to the ELBO can be expressed, with minor adjustments of Equation (1), whose Monte-Carlo128

approximation samples latents z and y from the recognition distribution q�
�
z,y | xi

�
.129

L
�
✓,�;xi

�
= Eq�(z,y|xi)

"
log

p✓
�
xi | z,y

�
p(z,y)

q�(z,y | xi)

#
. (2)

By contrast, in the fully supervised setting the values y are treated as observed and become fixed130

inputs into the computation graph, instead of being sampled from q�. When the label y is observed131

along with the data, for fixed (xi,yi) pairs, the lower bound on the conditional log-marginal likelihood132

log p✓(x | y) is133

Lx|y
�
✓,�z;x

i,yi
�
= Eq�z (z|xi,yi)

"
log

p✓
�
xi | z,yi

�
p
�
z | yi

�

q�z (z | xi,yi)

#
. (3)

This quantity can be optimized directly to learn model parameters ✓ and �z simultaneously via SGD.134

However, it does not contain the encoder parameters �y . This difficulty was also encountered in a135

related context by Kingma et al. [17]. Their solution was to augment the loss function by including136

an explicit additional term for learning a classifier directly on the supervised points.137

Here we propose an alternative approach. We extend the model with an auxiliary variable ỹ with138

likelihood p(ỹ | y) = �ỹ(y) to define densities139

p(ỹ,y, z,x) = p(ỹ | y)p✓(x | y, z)p(y, z)
q(ỹ,y, z | x) = p(ỹ | y)q(y, z | x).

When we marginalize the ELBO for this model over ỹ, we recover the expression in Equation (2).140

Treating ỹ = yi as observed results in the supervised objective141

L
�
✓,�;xi

���
ỹ=yi = Eq�(z,y|xi)

"
�yi(y) log

p✓
�
xi | z,y

�
p(z,y)

q�(z,y | xi)

#
. (4)

Integration over an observed y is then replaced with evaluation of the ELBO and the density q�y at142

yi. A Monte Carlo estimator of Equation (4) can be constructed automatically for any factorization143

of q� by sampling latent variables z and weighting the resulting ELBO estimate by the conditional144

density terms q�y (y|·).145

Note that the exact functional form of the Monte Carlo estimator will vary depending on the146

dependency structure of q�
�
z,y | xi

�
. For example, for discrete y, choosing q�(z,y | x) =147

q�z (z | y,x)q�y (y | x), decomposes the problem into simultaneously learning a classifier148

q�y (y | x) alongside the generative model parameters ✓ and encoder q�z (z|x,y) which is condi-149

tioned on the selected class. The computation graph for a model with this factorization is shown in Fig-150

ure 1. In it, the value y of the distribution q�y (· | x) is observed, while the distribution q�z (· | x,y)151

4

p

λ

y

η

ε

z p

λ

q

ηφ

φ

x (data) y (partial labels)

p

ηθ

q

Recognition Model

z x

y

Generative Model

z x
ε

y

x

Separate interpretable y  
from “nuisance” variables z

Disentangled  
Representation

(a) (b) (c) (d)

Figure 2: (a) Visual analogies for the MNIST data, with inferred style latent variable fixed and
the label varied. (b) Exploration in “style” space for a 2D latent gaussian random variable. Visual
analogies for the SVHN data when (c) fully supervised, and (d) partially supervised with just 100
labels/digit.

To train deep generative models in a semi-supervised manner, we need to incorporate labelled data126

into the variational bound. In a fully unsupervised setting, the contribution of a particular data127

point xi to the ELBO can be expressed, with minor adjustments of Equation (1), whose Monte-Carlo128

approximation samples latents z and y from the recognition distribution q�
�
z,y | xi

�
.129

L
�
✓,�;xi

�
= Eq�(z,y|xi)

"
log

p✓
�
xi | z,y

�
p(z,y)

q�(z,y | xi)

#
. (2)

By contrast, in the fully supervised setting the values y are treated as observed and become fixed130

inputs into the computation graph, instead of being sampled from q�. When the label y is observed131

along with the data, for fixed (xi,yi) pairs, the lower bound on the conditional log-marginal likelihood132

log p✓(x | y) is133

Lx|y
�
✓,�z;x

i,yi
�
= Eq�z (z|xi,yi)

"
log

p✓
�
xi | z,yi

�
p
�
z | yi

�

q�z (z | xi,yi)

#
. (3)

This quantity can be optimized directly to learn model parameters ✓ and �z simultaneously via SGD.134

However, it does not contain the encoder parameters �y . This difficulty was also encountered in a135

related context by Kingma et al. [17]. Their solution was to augment the loss function by including136

an explicit additional term for learning a classifier directly on the supervised points.137

Here we propose an alternative approach. We extend the model with an auxiliary variable ỹ with138

likelihood p(ỹ | y) = �ỹ(y) to define densities139

p(ỹ,y, z,x) = p(ỹ | y)p✓(x | y, z)p(y, z)
q(ỹ,y, z | x) = p(ỹ | y)q(y, z | x).

When we marginalize the ELBO for this model over ỹ, we recover the expression in Equation (2).140

Treating ỹ = yi as observed results in the supervised objective141

L
�
✓,�;xi

���
ỹ=yi = Eq�(z,y|xi)

"
�yi(y) log

p✓
�
xi | z,y

�
p(z,y)

q�(z,y | xi)

#
. (4)

Integration over an observed y is then replaced with evaluation of the ELBO and the density q�y at142

yi. A Monte Carlo estimator of Equation (4) can be constructed automatically for any factorization143

of q� by sampling latent variables z and weighting the resulting ELBO estimate by the conditional144

density terms q�y (y|·).145

Note that the exact functional form of the Monte Carlo estimator will vary depending on the146

dependency structure of q�
�
z,y | xi

�
. For example, for discrete y, choosing q�(z,y | x) =147

q�z (z | y,x)q�y (y | x), decomposes the problem into simultaneously learning a classifier148

q�y (y | x) alongside the generative model parameters ✓ and encoder q�z (z|x,y) which is condi-149

tioned on the selected class. The computation graph for a model with this factorization is shown in Fig-150

ure 1. In it, the value y of the distribution q�y (· | x) is observed, while the distribution q�z (· | x,y)151

4

z
(h

an
dw

rit
in

g
sty

le)

y (digit label)
Disentangled RepresentationStochastic Computation Graph for VAE

ε z

p

q λ

η

φ n

θ

z

p

q λ

η

φ n

θ

(a) (b) (c) (d)

Figure 2: (a) Visual analogies for the MNIST data, with inferred style latent variable fixed and
the label varied. (b) Exploration in “style” space for a 2D latent gaussian random variable. Visual
analogies for the SVHN data when (c) fully supervised, and (d) partially supervised with just 100
labels/digit.

To train deep generative models in a semi-supervised manner, we need to incorporate labelled data126

into the variational bound. In a fully unsupervised setting, the contribution of a particular data127

point xi to the ELBO can be expressed, with minor adjustments of Equation (1), whose Monte-Carlo128

approximation samples latents z and y from the recognition distribution q�
�
z,y | xi

�
.129

L
�
✓,�;xi

�
= Eq�(z,y|xi)

"
log

p✓
�
xi | z,y

�
p(z,y)

q�(z,y | xi)

#
. (2)

By contrast, in the fully supervised setting the values y are treated as observed and become fixed130

inputs into the computation graph, instead of being sampled from q�. When the label y is observed131

along with the data, for fixed (xi,yi) pairs, the lower bound on the conditional log-marginal likelihood132

log p✓(x | y) is133

Lx|y
�
✓,�z;x

i,yi
�
= Eq�z (z|xi,yi)

"
log

p✓
�
xi | z,yi

�
p
�
z | yi

�

q�z (z | xi,yi)

#
. (3)

This quantity can be optimized directly to learn model parameters ✓ and �z simultaneously via SGD.134

However, it does not contain the encoder parameters �y . This difficulty was also encountered in a135

related context by Kingma et al. [17]. Their solution was to augment the loss function by including136

an explicit additional term for learning a classifier directly on the supervised points.137

Here we propose an alternative approach. We extend the model with an auxiliary variable ỹ with138

likelihood p(ỹ | y) = �ỹ(y) to define densities139

p(ỹ,y, z,x) = p(ỹ | y)p✓(x | y, z)p(y, z)
q(ỹ,y, z | x) = p(ỹ | y)q(y, z | x).

When we marginalize the ELBO for this model over ỹ, we recover the expression in Equation (2).140

Treating ỹ = yi as observed results in the supervised objective141

L
�
✓,�;xi

���
ỹ=yi = Eq�(z,y|xi)

"
�yi(y) log

p✓
�
xi | z,y

�
p(z,y)

q�(z,y | xi)

#
. (4)

Integration over an observed y is then replaced with evaluation of the ELBO and the density q�y at142

yi. A Monte Carlo estimator of Equation (4) can be constructed automatically for any factorization143

of q� by sampling latent variables z and weighting the resulting ELBO estimate by the conditional144

density terms q�y (y|·).145

Note that the exact functional form of the Monte Carlo estimator will vary depending on the146

dependency structure of q�
�
z,y | xi

�
. For example, for discrete y, choosing q�(z,y | x) =147

q�z (z | y,x)q�y (y | x), decomposes the problem into simultaneously learning a classifier148

q�y (y | x) alongside the generative model parameters ✓ and encoder q�z (z|x,y) which is condi-149

tioned on the selected class. The computation graph for a model with this factorization is shown in Fig-150

ure 1. In it, the value y of the distribution q�y (· | x) is observed, while the distribution q�z (· | x,y)151

4

p

λ

y

η

ε

z p

λ

q

ηφ

φ

x (data) y (partial labels)

p

ηθ

q

Recognition Model

z x

y

Generative Model

z x
ε

y

x

Predict y from pixels x, 
then predict z from y and x

Probabilistic Encoder

(a) (b) (c) (d)

Figure 2: (a) Visual analogies for the MNIST data, with inferred style latent variable fixed and
the label varied. (b) Exploration in “style” space for a 2D latent gaussian random variable. Visual
analogies for the SVHN data when (c) fully supervised, and (d) partially supervised with just 100
labels/digit.

To train deep generative models in a semi-supervised manner, we need to incorporate labelled data126

into the variational bound. In a fully unsupervised setting, the contribution of a particular data127

point xi to the ELBO can be expressed, with minor adjustments of Equation (1), whose Monte-Carlo128

approximation samples latents z and y from the recognition distribution q�
�
z,y | xi

�
.129

L
�
✓,�;xi

�
= Eq�(z,y|xi)

"
log

p✓
�
xi | z,y

�
p(z,y)

q�(z,y | xi)

#
. (2)

By contrast, in the fully supervised setting the values y are treated as observed and become fixed130

inputs into the computation graph, instead of being sampled from q�. When the label y is observed131

along with the data, for fixed (xi,yi) pairs, the lower bound on the conditional log-marginal likelihood132

log p✓(x | y) is133

Lx|y
�
✓,�z;x

i,yi
�
= Eq�z (z|xi,yi)

"
log

p✓
�
xi | z,yi

�
p
�
z | yi

�

q�z (z | xi,yi)

#
. (3)

This quantity can be optimized directly to learn model parameters ✓ and �z simultaneously via SGD.134

However, it does not contain the encoder parameters �y . This difficulty was also encountered in a135

related context by Kingma et al. [17]. Their solution was to augment the loss function by including136

an explicit additional term for learning a classifier directly on the supervised points.137

Here we propose an alternative approach. We extend the model with an auxiliary variable ỹ with138

likelihood p(ỹ | y) = �ỹ(y) to define densities139

p(ỹ,y, z,x) = p(ỹ | y)p✓(x | y, z)p(y, z)
q(ỹ,y, z | x) = p(ỹ | y)q(y, z | x).

When we marginalize the ELBO for this model over ỹ, we recover the expression in Equation (2).140

Treating ỹ = yi as observed results in the supervised objective141

L
�
✓,�;xi

���
ỹ=yi = Eq�(z,y|xi)

"
�yi(y) log

p✓
�
xi | z,y

�
p(z,y)

q�(z,y | xi)

#
. (4)

Integration over an observed y is then replaced with evaluation of the ELBO and the density q�y at142

yi. A Monte Carlo estimator of Equation (4) can be constructed automatically for any factorization143

of q� by sampling latent variables z and weighting the resulting ELBO estimate by the conditional144

density terms q�y (y|·).145

Note that the exact functional form of the Monte Carlo estimator will vary depending on the146

dependency structure of q�
�
z,y | xi

�
. For example, for discrete y, choosing q�(z,y | x) =147

q�z (z | y,x)q�y (y | x), decomposes the problem into simultaneously learning a classifier148

q�y (y | x) alongside the generative model parameters ✓ and encoder q�z (z|x,y) which is condi-149

tioned on the selected class. The computation graph for a model with this factorization is shown in Fig-150

ure 1. In it, the value y of the distribution q�y (· | x) is observed, while the distribution q�z (· | x,y)151

4

z
(h

an
dw

rit
in

g
sty

le)

y (digit label)
Disentangled RepresentationStochastic Computation Graph for VAE

ε z

p

q λ

η

φ n

θ

z

p

q λ

η

φ n

θ

(a) (b) (c) (d)

Figure 2: (a) Visual analogies for the MNIST data, with inferred style latent variable fixed and
the label varied. (b) Exploration in “style” space for a 2D latent gaussian random variable. Visual
analogies for the SVHN data when (c) fully supervised, and (d) partially supervised with just 100
labels/digit.

To train deep generative models in a semi-supervised manner, we need to incorporate labelled data126

into the variational bound. In a fully unsupervised setting, the contribution of a particular data127

point xi to the ELBO can be expressed, with minor adjustments of Equation (1), whose Monte-Carlo128

approximation samples latents z and y from the recognition distribution q�
�
z,y | xi

�
.129

L
�
✓,�;xi

�
= Eq�(z,y|xi)

"
log

p✓
�
xi | z,y

�
p(z,y)

q�(z,y | xi)

#
. (2)

By contrast, in the fully supervised setting the values y are treated as observed and become fixed130

inputs into the computation graph, instead of being sampled from q�. When the label y is observed131

along with the data, for fixed (xi,yi) pairs, the lower bound on the conditional log-marginal likelihood132

log p✓(x | y) is133

Lx|y
�
✓,�z;x

i,yi
�
= Eq�z (z|xi,yi)

"
log

p✓
�
xi | z,yi

�
p
�
z | yi

�

q�z (z | xi,yi)

#
. (3)

This quantity can be optimized directly to learn model parameters ✓ and �z simultaneously via SGD.134

However, it does not contain the encoder parameters �y . This difficulty was also encountered in a135

related context by Kingma et al. [17]. Their solution was to augment the loss function by including136

an explicit additional term for learning a classifier directly on the supervised points.137

Here we propose an alternative approach. We extend the model with an auxiliary variable ỹ with138

likelihood p(ỹ | y) = �ỹ(y) to define densities139

p(ỹ,y, z,x) = p(ỹ | y)p✓(x | y, z)p(y, z)
q(ỹ,y, z | x) = p(ỹ | y)q(y, z | x).

When we marginalize the ELBO for this model over ỹ, we recover the expression in Equation (2).140

Treating ỹ = yi as observed results in the supervised objective141

L
�
✓,�;xi

���
ỹ=yi = Eq�(z,y|xi)

"
�yi(y) log

p✓
�
xi | z,y

�
p(z,y)

q�(z,y | xi)

#
. (4)

Integration over an observed y is then replaced with evaluation of the ELBO and the density q�y at142

yi. A Monte Carlo estimator of Equation (4) can be constructed automatically for any factorization143

of q� by sampling latent variables z and weighting the resulting ELBO estimate by the conditional144

density terms q�y (y|·).145

Note that the exact functional form of the Monte Carlo estimator will vary depending on the146

dependency structure of q�
�
z,y | xi

�
. For example, for discrete y, choosing q�(z,y | x) =147

q�z (z | y,x)q�y (y | x), decomposes the problem into simultaneously learning a classifier148

q�y (y | x) alongside the generative model parameters ✓ and encoder q�z (z|x,y) which is condi-149

tioned on the selected class. The computation graph for a model with this factorization is shown in Fig-150

ure 1. In it, the value y of the distribution q�y (· | x) is observed, while the distribution q�z (· | x,y)151

4

p

λ

y

η

ε

z p

λ

q

ηφ

φ

x (data) y (partial labels)

p

ηθ

q

Recognition Model

z x

y

Generative Model

z x
ε

y

x

Predict pixels x  
from y and z

Probabilistic Decoder

From one digit to many digits
Input Reconstruction Decomposition

M
M+N Count Error (%)

w/o MNIST w/ MNIST

0.1 85.45 (± 5.77) 76.33 (± 8.91)
0.5 93.27 (± 2.15) 80.27 (± 5.45)
1.0 99.81 (± 1.81) 84.79 (± 5.11)

Figure 6: Left: Example input multi-MNIST images and reconstructions. Top-Right: Decomposition
of Multi-MNIST images into constituent MNIST digits. Bottom-Right: Count accuracy over
different supervised set sizes M for given dataset size M + N = 82000.

Here, the generative model presumes the availability of individual MNIST-digit images, generating
combinations under sampled affine transformations. In the second experiment, we extend the above
model to now also incorporate the same pre-trained MNIST model from the previous section, which
allows the generative model to sample MNIST-digit images, while also being able to predict the
underlying digits. This also demonstrates how we can leverage compositionality of models: when
a complex model has a known simpler model as a substructure, the simpler model and its learned
weights can be dropped in directly.

The count accuracy errors across different supervised set sizes, reconstructions for a random set of
inputs, and the decomposition of a given set of inputs into their constituent individual digits, are
shown in Fig. 6. All reconstructions and image decompositions shown correspond to the nested-model
configuration. We observe that not only are we able to reliably infer the counts of the digits in the
given images, we are able to simultaneously reconstruct the inputs as well as its constituent parts.

4 Discussion and Conclusion

In this paper we introduce a framework for learning disentangled representations of data using
partially-specified graphical model structures and semi-supervised learning schemes in the domain of
variational autoencoders (VAEs). This is accomplished by defining hybrid generative models which
incorporate both structured graphical models and unstructured random variables in the same latent
space. We demonstrate the flexibility of this approach by applying it to a variety of different tasks
in the visual domain, and evaluate its efficacy at learning disentangled representations in a semi-
supervised manner, showing strong performance. Such partially-specified models yield recognition
networks that make predictions in an interpretable and disentangled space, constrained by the structure
provided by the graphical model and the weak supervision.

The framework is implemented as a PyTorch library [25], enabling the construction of stochastic
computation graphs which encode the requisite structure and computation. This provides another
direction to explore in the future — the extension of the stochastic computation graph framework to
probabilistic programming [8, 34, 35]. Probabilistic programs go beyond the presented framework to
permit more expressive models, incorporating recursive structures and higher-order functions. The
combination of such frameworks with neural networks has recently been studied in Le et al. [22] and
Ritchie et al. [28], indicating a promising avenue for further exploration.

Acknowledgements

This work was supported by the EPSRC, ERC grant ERC-2012-AdG 321162-HELIOS, EPSRC
grant Seebibyte EP/M013774/1, and EPSRC/MURI grant EP/N019474/1. BP was supported by The
Alan Turing Institute under the EPSRC grant EP/N510129/1. FW and NDG were supported under
DARPA PPAML through the U.S. AFRL under Cooperative Agreement FA8750-14-2-0006. FW was
additionally supported by Intel and DARPA D3M, under Cooperative Agreement FA8750-17-2-0093.

9

MNIST with (some) Supervision

(a) (b) (c) (d)

Figure 2: (a) Visual analogies for the MNIST data, with inferred style latent variable fixed and
the label varied. (b) Exploration in “style” space for a 2D latent gaussian random variable. Visual
analogies for the SVHN data when (c) fully supervised, and (d) partially supervised with just 100
labels/digit.

To train deep generative models in a semi-supervised manner, we need to incorporate labelled data126

into the variational bound. In a fully unsupervised setting, the contribution of a particular data127

point xi to the ELBO can be expressed, with minor adjustments of Equation (1), whose Monte-Carlo128

approximation samples latents z and y from the recognition distribution q�
�
z,y | xi

�
.129

L
�
✓,�;xi

�
= Eq�(z,y|xi)

"
log

p✓
�
xi | z,y

�
p(z,y)

q�(z,y | xi)

#
. (2)

By contrast, in the fully supervised setting the values y are treated as observed and become fixed130

inputs into the computation graph, instead of being sampled from q�. When the label y is observed131

along with the data, for fixed (xi,yi) pairs, the lower bound on the conditional log-marginal likelihood132

log p✓(x | y) is133

Lx|y
�
✓,�z;x

i,yi
�
= Eq�z (z|xi,yi)

"
log

p✓
�
xi | z,yi

�
p
�
z | yi

�

q�z (z | xi,yi)

#
. (3)

This quantity can be optimized directly to learn model parameters ✓ and �z simultaneously via SGD.134

However, it does not contain the encoder parameters �y . This difficulty was also encountered in a135

related context by Kingma et al. [17]. Their solution was to augment the loss function by including136

an explicit additional term for learning a classifier directly on the supervised points.137

Here we propose an alternative approach. We extend the model with an auxiliary variable ỹ with138

likelihood p(ỹ | y) = �ỹ(y) to define densities139

p(ỹ,y, z,x) = p(ỹ | y)p✓(x | y, z)p(y, z)
q(ỹ,y, z | x) = p(ỹ | y)q(y, z | x).

When we marginalize the ELBO for this model over ỹ, we recover the expression in Equation (2).140

Treating ỹ = yi as observed results in the supervised objective141

L
�
✓,�;xi

���
ỹ=yi = Eq�(z,y|xi)

"
�yi(y) log

p✓
�
xi | z,y

�
p(z,y)

q�(z,y | xi)

#
. (4)

Integration over an observed y is then replaced with evaluation of the ELBO and the density q�y at142

yi. A Monte Carlo estimator of Equation (4) can be constructed automatically for any factorization143

of q� by sampling latent variables z and weighting the resulting ELBO estimate by the conditional144

density terms q�y (y|·).145

Note that the exact functional form of the Monte Carlo estimator will vary depending on the146

dependency structure of q�
�
z,y | xi

�
. For example, for discrete y, choosing q�(z,y | x) =147

q�z (z | y,x)q�y (y | x), decomposes the problem into simultaneously learning a classifier148

q�y (y | x) alongside the generative model parameters ✓ and encoder q�z (z|x,y) which is condi-149

tioned on the selected class. The computation graph for a model with this factorization is shown in Fig-150

ure 1. In it, the value y of the distribution q�y (· | x) is observed, while the distribution q�z (· | x,y)151

4

z
(h

an
dw

rit
in

g
sty

le)

y (digit label)
Disentangled RepresentationStochastic Computation Graph for VAE

ε z

p

q λ

η

φ n

θ

z

p

q λ

η

φ n

θ

(a) (b) (c) (d)

Figure 2: (a) Visual analogies for the MNIST data, with inferred style latent variable fixed and
the label varied. (b) Exploration in “style” space for a 2D latent gaussian random variable. Visual
analogies for the SVHN data when (c) fully supervised, and (d) partially supervised with just 100
labels/digit.

To train deep generative models in a semi-supervised manner, we need to incorporate labelled data126

into the variational bound. In a fully unsupervised setting, the contribution of a particular data127

point xi to the ELBO can be expressed, with minor adjustments of Equation (1), whose Monte-Carlo128

approximation samples latents z and y from the recognition distribution q�
�
z,y | xi

�
.129

L
�
✓,�;xi

�
= Eq�(z,y|xi)

"
log

p✓
�
xi | z,y

�
p(z,y)

q�(z,y | xi)

#
. (2)

By contrast, in the fully supervised setting the values y are treated as observed and become fixed130

inputs into the computation graph, instead of being sampled from q�. When the label y is observed131

along with the data, for fixed (xi,yi) pairs, the lower bound on the conditional log-marginal likelihood132

log p✓(x | y) is133

Lx|y
�
✓,�z;x

i,yi
�
= Eq�z (z|xi,yi)

"
log

p✓
�
xi | z,yi

�
p
�
z | yi

�

q�z (z | xi,yi)

#
. (3)

This quantity can be optimized directly to learn model parameters ✓ and �z simultaneously via SGD.134

However, it does not contain the encoder parameters �y . This difficulty was also encountered in a135

related context by Kingma et al. [17]. Their solution was to augment the loss function by including136

an explicit additional term for learning a classifier directly on the supervised points.137

Here we propose an alternative approach. We extend the model with an auxiliary variable ỹ with138

likelihood p(ỹ | y) = �ỹ(y) to define densities139

p(ỹ,y, z,x) = p(ỹ | y)p✓(x | y, z)p(y, z)
q(ỹ,y, z | x) = p(ỹ | y)q(y, z | x).

When we marginalize the ELBO for this model over ỹ, we recover the expression in Equation (2).140

Treating ỹ = yi as observed results in the supervised objective141

L
�
✓,�;xi

���
ỹ=yi = Eq�(z,y|xi)

"
�yi(y) log

p✓
�
xi | z,y

�
p(z,y)

q�(z,y | xi)

#
. (4)

Integration over an observed y is then replaced with evaluation of the ELBO and the density q�y at142

yi. A Monte Carlo estimator of Equation (4) can be constructed automatically for any factorization143

of q� by sampling latent variables z and weighting the resulting ELBO estimate by the conditional144

density terms q�y (y|·).145

Note that the exact functional form of the Monte Carlo estimator will vary depending on the146

dependency structure of q�
�
z,y | xi

�
. For example, for discrete y, choosing q�(z,y | x) =147

q�z (z | y,x)q�y (y | x), decomposes the problem into simultaneously learning a classifier148

q�y (y | x) alongside the generative model parameters ✓ and encoder q�z (z|x,y) which is condi-149

tioned on the selected class. The computation graph for a model with this factorization is shown in Fig-150

ure 1. In it, the value y of the distribution q�y (· | x) is observed, while the distribution q�z (· | x,y)151

4

p

λ

y

η

ε

z p

λ

q

ηφ

φ

x (data) y (partial labels)

p

ηθ

q

Recognition Model

z x

y

Generative Model

z x
ε

y

x

Separate interpretable y  
from “nuisance” variables z

Disentangled  
Representation

(a) (b) (c) (d)

Figure 2: (a) Visual analogies for the MNIST data, with inferred style latent variable fixed and
the label varied. (b) Exploration in “style” space for a 2D latent gaussian random variable. Visual
analogies for the SVHN data when (c) fully supervised, and (d) partially supervised with just 100
labels/digit.

To train deep generative models in a semi-supervised manner, we need to incorporate labelled data126

into the variational bound. In a fully unsupervised setting, the contribution of a particular data127

point xi to the ELBO can be expressed, with minor adjustments of Equation (1), whose Monte-Carlo128

approximation samples latents z and y from the recognition distribution q�
�
z,y | xi

�
.129

L
�
✓,�;xi

�
= Eq�(z,y|xi)

"
log

p✓
�
xi | z,y

�
p(z,y)

q�(z,y | xi)

#
. (2)

By contrast, in the fully supervised setting the values y are treated as observed and become fixed130

inputs into the computation graph, instead of being sampled from q�. When the label y is observed131

along with the data, for fixed (xi,yi) pairs, the lower bound on the conditional log-marginal likelihood132

log p✓(x | y) is133

Lx|y
�
✓,�z;x

i,yi
�
= Eq�z (z|xi,yi)

"
log

p✓
�
xi | z,yi

�
p
�
z | yi

�

q�z (z | xi,yi)

#
. (3)

This quantity can be optimized directly to learn model parameters ✓ and �z simultaneously via SGD.134

However, it does not contain the encoder parameters �y . This difficulty was also encountered in a135

related context by Kingma et al. [17]. Their solution was to augment the loss function by including136

an explicit additional term for learning a classifier directly on the supervised points.137

Here we propose an alternative approach. We extend the model with an auxiliary variable ỹ with138

likelihood p(ỹ | y) = �ỹ(y) to define densities139

p(ỹ,y, z,x) = p(ỹ | y)p✓(x | y, z)p(y, z)
q(ỹ,y, z | x) = p(ỹ | y)q(y, z | x).

When we marginalize the ELBO for this model over ỹ, we recover the expression in Equation (2).140

Treating ỹ = yi as observed results in the supervised objective141

L
�
✓,�;xi

���
ỹ=yi = Eq�(z,y|xi)

"
�yi(y) log

p✓
�
xi | z,y

�
p(z,y)

q�(z,y | xi)

#
. (4)

Integration over an observed y is then replaced with evaluation of the ELBO and the density q�y at142

yi. A Monte Carlo estimator of Equation (4) can be constructed automatically for any factorization143

of q� by sampling latent variables z and weighting the resulting ELBO estimate by the conditional144

density terms q�y (y|·).145

Note that the exact functional form of the Monte Carlo estimator will vary depending on the146

dependency structure of q�
�
z,y | xi

�
. For example, for discrete y, choosing q�(z,y | x) =147

q�z (z | y,x)q�y (y | x), decomposes the problem into simultaneously learning a classifier148

q�y (y | x) alongside the generative model parameters ✓ and encoder q�z (z|x,y) which is condi-149

tioned on the selected class. The computation graph for a model with this factorization is shown in Fig-150

ure 1. In it, the value y of the distribution q�y (· | x) is observed, while the distribution q�z (· | x,y)151

4

z
(h

an
dw

rit
in

g
sty

le)

y (digit label)
Disentangled RepresentationStochastic Computation Graph for VAE

ε z

p

q λ

η

φ n

θ

z

p

q λ

η

φ n

θ

(a) (b) (c) (d)

Figure 2: (a) Visual analogies for the MNIST data, with inferred style latent variable fixed and
the label varied. (b) Exploration in “style” space for a 2D latent gaussian random variable. Visual
analogies for the SVHN data when (c) fully supervised, and (d) partially supervised with just 100
labels/digit.

To train deep generative models in a semi-supervised manner, we need to incorporate labelled data126

into the variational bound. In a fully unsupervised setting, the contribution of a particular data127

point xi to the ELBO can be expressed, with minor adjustments of Equation (1), whose Monte-Carlo128

approximation samples latents z and y from the recognition distribution q�
�
z,y | xi

�
.129

L
�
✓,�;xi

�
= Eq�(z,y|xi)

"
log

p✓
�
xi | z,y

�
p(z,y)

q�(z,y | xi)

#
. (2)

By contrast, in the fully supervised setting the values y are treated as observed and become fixed130

inputs into the computation graph, instead of being sampled from q�. When the label y is observed131

along with the data, for fixed (xi,yi) pairs, the lower bound on the conditional log-marginal likelihood132

log p✓(x | y) is133

Lx|y
�
✓,�z;x

i,yi
�
= Eq�z (z|xi,yi)

"
log

p✓
�
xi | z,yi

�
p
�
z | yi

�

q�z (z | xi,yi)

#
. (3)

This quantity can be optimized directly to learn model parameters ✓ and �z simultaneously via SGD.134

However, it does not contain the encoder parameters �y . This difficulty was also encountered in a135

related context by Kingma et al. [17]. Their solution was to augment the loss function by including136

an explicit additional term for learning a classifier directly on the supervised points.137

Here we propose an alternative approach. We extend the model with an auxiliary variable ỹ with138

likelihood p(ỹ | y) = �ỹ(y) to define densities139

p(ỹ,y, z,x) = p(ỹ | y)p✓(x | y, z)p(y, z)
q(ỹ,y, z | x) = p(ỹ | y)q(y, z | x).

When we marginalize the ELBO for this model over ỹ, we recover the expression in Equation (2).140

Treating ỹ = yi as observed results in the supervised objective141

L
�
✓,�;xi

���
ỹ=yi = Eq�(z,y|xi)

"
�yi(y) log

p✓
�
xi | z,y

�
p(z,y)

q�(z,y | xi)

#
. (4)

Integration over an observed y is then replaced with evaluation of the ELBO and the density q�y at142

yi. A Monte Carlo estimator of Equation (4) can be constructed automatically for any factorization143

of q� by sampling latent variables z and weighting the resulting ELBO estimate by the conditional144

density terms q�y (y|·).145

Note that the exact functional form of the Monte Carlo estimator will vary depending on the146

dependency structure of q�
�
z,y | xi

�
. For example, for discrete y, choosing q�(z,y | x) =147

q�z (z | y,x)q�y (y | x), decomposes the problem into simultaneously learning a classifier148

q�y (y | x) alongside the generative model parameters ✓ and encoder q�z (z|x,y) which is condi-149

tioned on the selected class. The computation graph for a model with this factorization is shown in Fig-150

ure 1. In it, the value y of the distribution q�y (· | x) is observed, while the distribution q�z (· | x,y)151

4

p

λ

y

η

ε

z p

λ

q

ηφ

φ

x (data) y (partial labels)

p

ηθ

q

Recognition Model

z x

y

Generative Model

z x
ε

y

x

Predict y from pixels x, 
then predict z from y and x

Probabilistic Encoder

(a) (b) (c) (d)

Figure 2: (a) Visual analogies for the MNIST data, with inferred style latent variable fixed and
the label varied. (b) Exploration in “style” space for a 2D latent gaussian random variable. Visual
analogies for the SVHN data when (c) fully supervised, and (d) partially supervised with just 100
labels/digit.

To train deep generative models in a semi-supervised manner, we need to incorporate labelled data126

into the variational bound. In a fully unsupervised setting, the contribution of a particular data127

point xi to the ELBO can be expressed, with minor adjustments of Equation (1), whose Monte-Carlo128

approximation samples latents z and y from the recognition distribution q�
�
z,y | xi

�
.129

L
�
✓,�;xi

�
= Eq�(z,y|xi)

"
log

p✓
�
xi | z,y

�
p(z,y)

q�(z,y | xi)

#
. (2)

By contrast, in the fully supervised setting the values y are treated as observed and become fixed130

inputs into the computation graph, instead of being sampled from q�. When the label y is observed131

along with the data, for fixed (xi,yi) pairs, the lower bound on the conditional log-marginal likelihood132

log p✓(x | y) is133

Lx|y
�
✓,�z;x

i,yi
�
= Eq�z (z|xi,yi)

"
log

p✓
�
xi | z,yi

�
p
�
z | yi

�

q�z (z | xi,yi)

#
. (3)

This quantity can be optimized directly to learn model parameters ✓ and �z simultaneously via SGD.134

However, it does not contain the encoder parameters �y . This difficulty was also encountered in a135

related context by Kingma et al. [17]. Their solution was to augment the loss function by including136

an explicit additional term for learning a classifier directly on the supervised points.137

Here we propose an alternative approach. We extend the model with an auxiliary variable ỹ with138

likelihood p(ỹ | y) = �ỹ(y) to define densities139

p(ỹ,y, z,x) = p(ỹ | y)p✓(x | y, z)p(y, z)
q(ỹ,y, z | x) = p(ỹ | y)q(y, z | x).

When we marginalize the ELBO for this model over ỹ, we recover the expression in Equation (2).140

Treating ỹ = yi as observed results in the supervised objective141

L
�
✓,�;xi

���
ỹ=yi = Eq�(z,y|xi)

"
�yi(y) log

p✓
�
xi | z,y

�
p(z,y)

q�(z,y | xi)

#
. (4)

Integration over an observed y is then replaced with evaluation of the ELBO and the density q�y at142

yi. A Monte Carlo estimator of Equation (4) can be constructed automatically for any factorization143

of q� by sampling latent variables z and weighting the resulting ELBO estimate by the conditional144

density terms q�y (y|·).145

Note that the exact functional form of the Monte Carlo estimator will vary depending on the146

dependency structure of q�
�
z,y | xi

�
. For example, for discrete y, choosing q�(z,y | x) =147

q�z (z | y,x)q�y (y | x), decomposes the problem into simultaneously learning a classifier148

q�y (y | x) alongside the generative model parameters ✓ and encoder q�z (z|x,y) which is condi-149

tioned on the selected class. The computation graph for a model with this factorization is shown in Fig-150

ure 1. In it, the value y of the distribution q�y (· | x) is observed, while the distribution q�z (· | x,y)151

4

z
(h

an
dw

rit
in

g
sty

le)

y (digit label)
Disentangled RepresentationStochastic Computation Graph for VAE

ε z

p

q λ

η

φ n

θ

z

p

q λ

η

φ n

θ

(a) (b) (c) (d)

Figure 2: (a) Visual analogies for the MNIST data, with inferred style latent variable fixed and
the label varied. (b) Exploration in “style” space for a 2D latent gaussian random variable. Visual
analogies for the SVHN data when (c) fully supervised, and (d) partially supervised with just 100
labels/digit.

To train deep generative models in a semi-supervised manner, we need to incorporate labelled data126

into the variational bound. In a fully unsupervised setting, the contribution of a particular data127

point xi to the ELBO can be expressed, with minor adjustments of Equation (1), whose Monte-Carlo128

approximation samples latents z and y from the recognition distribution q�
�
z,y | xi

�
.129

L
�
✓,�;xi

�
= Eq�(z,y|xi)

"
log

p✓
�
xi | z,y

�
p(z,y)

q�(z,y | xi)

#
. (2)

By contrast, in the fully supervised setting the values y are treated as observed and become fixed130

inputs into the computation graph, instead of being sampled from q�. When the label y is observed131

along with the data, for fixed (xi,yi) pairs, the lower bound on the conditional log-marginal likelihood132

log p✓(x | y) is133

Lx|y
�
✓,�z;x

i,yi
�
= Eq�z (z|xi,yi)

"
log

p✓
�
xi | z,yi

�
p
�
z | yi

�

q�z (z | xi,yi)

#
. (3)

This quantity can be optimized directly to learn model parameters ✓ and �z simultaneously via SGD.134

However, it does not contain the encoder parameters �y . This difficulty was also encountered in a135

related context by Kingma et al. [17]. Their solution was to augment the loss function by including136

an explicit additional term for learning a classifier directly on the supervised points.137

Here we propose an alternative approach. We extend the model with an auxiliary variable ỹ with138

likelihood p(ỹ | y) = �ỹ(y) to define densities139

p(ỹ,y, z,x) = p(ỹ | y)p✓(x | y, z)p(y, z)
q(ỹ,y, z | x) = p(ỹ | y)q(y, z | x).

When we marginalize the ELBO for this model over ỹ, we recover the expression in Equation (2).140

Treating ỹ = yi as observed results in the supervised objective141

L
�
✓,�;xi

���
ỹ=yi = Eq�(z,y|xi)

"
�yi(y) log

p✓
�
xi | z,y

�
p(z,y)

q�(z,y | xi)

#
. (4)

Integration over an observed y is then replaced with evaluation of the ELBO and the density q�y at142

yi. A Monte Carlo estimator of Equation (4) can be constructed automatically for any factorization143

of q� by sampling latent variables z and weighting the resulting ELBO estimate by the conditional144

density terms q�y (y|·).145

Note that the exact functional form of the Monte Carlo estimator will vary depending on the146

dependency structure of q�
�
z,y | xi

�
. For example, for discrete y, choosing q�(z,y | x) =147

q�z (z | y,x)q�y (y | x), decomposes the problem into simultaneously learning a classifier148

q�y (y | x) alongside the generative model parameters ✓ and encoder q�z (z|x,y) which is condi-149

tioned on the selected class. The computation graph for a model with this factorization is shown in Fig-150

ure 1. In it, the value y of the distribution q�y (· | x) is observed, while the distribution q�z (· | x,y)151

4

p

λ

y

η

ε

z p

λ

q

ηφ

φ

x (data) y (partial labels)

p

ηθ

q

Recognition Model

z x

y

Generative Model

z x
ε

y

x

Predict pixels x  
from y and z

Probabilistic Decoder

Nuisance

Pixels

Label

Generative model

From one digit to many digits

Input Recon. Varying Identity

Input Recon. Varying Lighting

Identity Lighting

Ours
(Full Supervision)

1.9% (± 1.5) 3.1% (± 3.8)

Ours
(Semi-Supervised)

3.5% (± 3.4) 17.6% (± 1.8)

Jampani et al. [11]
(plot asymptotes)

⇡ 30 ⇡ 10

Figure 4: Left: Exploring the generative capacity of the supervised model by manipulating identity
and lighting given a fixed (inferred) value of the other latent variables. Right: Classification and
regression error rates for identity and lighting latent variables, fully-supervised, and semi-supervised
(with 6 labelled example images for each of the 38 individuals, a supervision rate of ⇢ = 0.5,
and ↵ = 10). Classification is a direct 1-out-of-38 choice, whereas for the comparison, error is a
nearest-neighbour loss based on the inferred reflectance. Regression loss is angular distance.

3.3 Multi-MNIST

Finally, we conduct an experiment that extends the complexity from the prior models even further.
Particularly, we explore the capacity of our framework to handle models with stochastic dimension-
ality – having the number of latent variables itself determined by a random variable, and models
that can be composed of other smaller (sub-)models. We conduct this experiment in the domain of
multi-MNIST. This is an apposite choice as it satisfies both the requirements above – each image can
have a varying number of individual digits, which essentially dictates that the model must learn to
count, and as each image is itself composed of (scaled and translated) exemplars from the MNIST
data, we can employ the MNIST model itself within the multi-MNIST model.

The model structure that we assume for the generative and recognition networks is shown in Fig. 5.
We extend the models from the MNIST experiment by composing it with a stochastic sequence
generator, in which the loop length K is a random variable. For each loop iteration k = 1, . . . , K,
the generative model iteratively samples a digit yk, style zk, and uses these to generate a digit image
xk in the same manner as in the earlier MNIST example. Additionally, an affine tranformation is also
sampled for each digit in each iteration to transform the digit images xk into a common, combined
canvas that represents the final generated image x, using a spatial transformer network [10].

In the recognition model, we predict the number of digits K from the pixels in the image. For each
loop iteration k = 1, . . . , K, we define a Bernoulli-distributed digit image xk. When supervision is
available, we compute the probability of xk from the binary cross-entropy in the same manner as in
the likelihood term for the MNIST model. When no supervision is available, we deterministically set
xk to the mean of the distribution. This can be seen akin to providing bounding-boxes around the
constituent digits as supervision for the labelled data, which must be taken into account when learning
the affine transformations that decompose a multi-MNIST image into its constituent MNIST-like
images. This model design is similar to the one used in DRAW [9], recurrent VAEs [3], and AIR [4].

In the absence of a canonical multi-MNIST dataset, we created our own from the MNIST dataset by
manipulating the scale and positioning of the standard digits into a combined canvas, evenly balanced
across the counts (1-3) and digits. We then conducted two experiments within this domain. In the
first experiment, we seek to measure how well the stochastic sequence generator learns to count
on its own, with no heed paid to disentangling the latent representations for the underlying digits.

Intrinsic Faces Multi-MNIST

x

i `s

r x

i`

r

s

xak

xkzk

yk

K

K

x

K

ak

xk

hk

zk

yk

hk�1

K

Generative Model Recognition Model Generative Model Recognition Model

Figure 5: Generative and recognition models for the intrinsic-faces and multi-MNIST experiments.

8

Nuisance

Pixels
Label

Pixels

Transformation

Count

Input Reconstruction Decomposition

M
M+N Count Error (%)

w/o MNIST w/ MNIST

0.1 85.45 (± 5.77) 76.33 (± 8.91)
0.5 93.27 (± 2.15) 80.27 (± 5.45)
1.0 99.81 (± 1.81) 84.79 (± 5.11)

Figure 6: Left: Example input multi-MNIST images and reconstructions. Top-Right: Decomposition
of Multi-MNIST images into constituent MNIST digits. Bottom-Right: Count accuracy over
different supervised set sizes M for given dataset size M + N = 82000.

Here, the generative model presumes the availability of individual MNIST-digit images, generating
combinations under sampled affine transformations. In the second experiment, we extend the above
model to now also incorporate the same pre-trained MNIST model from the previous section, which
allows the generative model to sample MNIST-digit images, while also being able to predict the
underlying digits. This also demonstrates how we can leverage compositionality of models: when
a complex model has a known simpler model as a substructure, the simpler model and its learned
weights can be dropped in directly.

The count accuracy errors across different supervised set sizes, reconstructions for a random set of
inputs, and the decomposition of a given set of inputs into their constituent individual digits, are
shown in Fig. 6. All reconstructions and image decompositions shown correspond to the nested-model
configuration. We observe that not only are we able to reliably infer the counts of the digits in the
given images, we are able to simultaneously reconstruct the inputs as well as its constituent parts.

4 Discussion and Conclusion

In this paper we introduce a framework for learning disentangled representations of data using
partially-specified graphical model structures and semi-supervised learning schemes in the domain of
variational autoencoders (VAEs). This is accomplished by defining hybrid generative models which
incorporate both structured graphical models and unstructured random variables in the same latent
space. We demonstrate the flexibility of this approach by applying it to a variety of different tasks
in the visual domain, and evaluate its efficacy at learning disentangled representations in a semi-
supervised manner, showing strong performance. Such partially-specified models yield recognition
networks that make predictions in an interpretable and disentangled space, constrained by the structure
provided by the graphical model and the weak supervision.

The framework is implemented as a PyTorch library [25], enabling the construction of stochastic
computation graphs which encode the requisite structure and computation. This provides another
direction to explore in the future — the extension of the stochastic computation graph framework to
probabilistic programming [8, 34, 35]. Probabilistic programs go beyond the presented framework to
permit more expressive models, incorporating recursive structures and higher-order functions. The
combination of such frameworks with neural networks has recently been studied in Le et al. [22] and
Ritchie et al. [28], indicating a promising avenue for further exploration.

Acknowledgements

This work was supported by the EPSRC, ERC grant ERC-2012-AdG 321162-HELIOS, EPSRC
grant Seebibyte EP/M013774/1, and EPSRC/MURI grant EP/N019474/1. BP was supported by The
Alan Turing Institute under the EPSRC grant EP/N510129/1. FW and NDG were supported under
DARPA PPAML through the U.S. AFRL under Cooperative Agreement FA8750-14-2-0006. FW was
additionally supported by Intel and DARPA D3M, under Cooperative Agreement FA8750-17-2-0093.

9

Generative model

How do we build models?

Input Recon. Varying Identity

Input Recon. Varying Lighting

Identity Lighting

Ours
(Full Supervision)

1.9% (± 1.5) 3.1% (± 3.8)

Ours
(Semi-Supervised)

3.5% (± 3.4) 17.6% (± 1.8)

Jampani et al. [11]
(plot asymptotes)

⇡ 30 ⇡ 10

Figure 4: Left: Exploring the generative capacity of the supervised model by manipulating identity
and lighting given a fixed (inferred) value of the other latent variables. Right: Classification and
regression error rates for identity and lighting latent variables, fully-supervised, and semi-supervised
(with 6 labelled example images for each of the 38 individuals, a supervision rate of ⇢ = 0.5,
and ↵ = 10). Classification is a direct 1-out-of-38 choice, whereas for the comparison, error is a
nearest-neighbour loss based on the inferred reflectance. Regression loss is angular distance.

3.3 Multi-MNIST

Finally, we conduct an experiment that extends the complexity from the prior models even further.
Particularly, we explore the capacity of our framework to handle models with stochastic dimension-
ality – having the number of latent variables itself determined by a random variable, and models
that can be composed of other smaller (sub-)models. We conduct this experiment in the domain of
multi-MNIST. This is an apposite choice as it satisfies both the requirements above – each image can
have a varying number of individual digits, which essentially dictates that the model must learn to
count, and as each image is itself composed of (scaled and translated) exemplars from the MNIST
data, we can employ the MNIST model itself within the multi-MNIST model.

The model structure that we assume for the generative and recognition networks is shown in Fig. 5.
We extend the models from the MNIST experiment by composing it with a stochastic sequence
generator, in which the loop length K is a random variable. For each loop iteration k = 1, . . . , K,
the generative model iteratively samples a digit yk, style zk, and uses these to generate a digit image
xk in the same manner as in the earlier MNIST example. Additionally, an affine tranformation is also
sampled for each digit in each iteration to transform the digit images xk into a common, combined
canvas that represents the final generated image x, using a spatial transformer network [10].

In the recognition model, we predict the number of digits K from the pixels in the image. For each
loop iteration k = 1, . . . , K, we define a Bernoulli-distributed digit image xk. When supervision is
available, we compute the probability of xk from the binary cross-entropy in the same manner as in
the likelihood term for the MNIST model. When no supervision is available, we deterministically set
xk to the mean of the distribution. This can be seen akin to providing bounding-boxes around the
constituent digits as supervision for the labelled data, which must be taken into account when learning
the affine transformations that decompose a multi-MNIST image into its constituent MNIST-like
images. This model design is similar to the one used in DRAW [9], recurrent VAEs [3], and AIR [4].

In the absence of a canonical multi-MNIST dataset, we created our own from the MNIST dataset by
manipulating the scale and positioning of the standard digits into a combined canvas, evenly balanced
across the counts (1-3) and digits. We then conducted two experiments within this domain. In the
first experiment, we seek to measure how well the stochastic sequence generator learns to count
on its own, with no heed paid to disentangling the latent representations for the underlying digits.

Intrinsic Faces Multi-MNIST

x

i `s

r x

i`

r

s

xak

xkzk

yk

K

K

x

K

ak

xk

hk

zk

yk

hk�1

K

Generative Model Recognition Model Generative Model Recognition Model

Figure 5: Generative and recognition models for the intrinsic-faces and multi-MNIST experiments.

8

Generative model

Input Recon. Varying Identity

Input Recon. Varying Lighting

Identity Lighting

Ours
(Full Supervision)

1.9% (± 1.5) 3.1% (± 3.8)

Ours
(Semi-Supervised)

3.5% (± 3.4) 17.6% (± 1.8)

Jampani et al. [11]
(plot asymptotes)

⇡ 30 ⇡ 10

Figure 4: Left: Exploring the generative capacity of the supervised model by manipulating identity
and lighting given a fixed (inferred) value of the other latent variables. Right: Classification and
regression error rates for identity and lighting latent variables, fully-supervised, and semi-supervised
(with 6 labelled example images for each of the 38 individuals, a supervision rate of ⇢ = 0.5,
and ↵ = 10). Classification is a direct 1-out-of-38 choice, whereas for the comparison, error is a
nearest-neighbour loss based on the inferred reflectance. Regression loss is angular distance.

3.3 Multi-MNIST

Finally, we conduct an experiment that extends the complexity from the prior models even further.
Particularly, we explore the capacity of our framework to handle models with stochastic dimension-
ality – having the number of latent variables itself determined by a random variable, and models
that can be composed of other smaller (sub-)models. We conduct this experiment in the domain of
multi-MNIST. This is an apposite choice as it satisfies both the requirements above – each image can
have a varying number of individual digits, which essentially dictates that the model must learn to
count, and as each image is itself composed of (scaled and translated) exemplars from the MNIST
data, we can employ the MNIST model itself within the multi-MNIST model.

The model structure that we assume for the generative and recognition networks is shown in Fig. 5.
We extend the models from the MNIST experiment by composing it with a stochastic sequence
generator, in which the loop length K is a random variable. For each loop iteration k = 1, . . . , K,
the generative model iteratively samples a digit yk, style zk, and uses these to generate a digit image
xk in the same manner as in the earlier MNIST example. Additionally, an affine tranformation is also
sampled for each digit in each iteration to transform the digit images xk into a common, combined
canvas that represents the final generated image x, using a spatial transformer network [10].

In the recognition model, we predict the number of digits K from the pixels in the image. For each
loop iteration k = 1, . . . , K, we define a Bernoulli-distributed digit image xk. When supervision is
available, we compute the probability of xk from the binary cross-entropy in the same manner as in
the likelihood term for the MNIST model. When no supervision is available, we deterministically set
xk to the mean of the distribution. This can be seen akin to providing bounding-boxes around the
constituent digits as supervision for the labelled data, which must be taken into account when learning
the affine transformations that decompose a multi-MNIST image into its constituent MNIST-like
images. This model design is similar to the one used in DRAW [9], recurrent VAEs [3], and AIR [4].

In the absence of a canonical multi-MNIST dataset, we created our own from the MNIST dataset by
manipulating the scale and positioning of the standard digits into a combined canvas, evenly balanced
across the counts (1-3) and digits. We then conducted two experiments within this domain. In the
first experiment, we seek to measure how well the stochastic sequence generator learns to count
on its own, with no heed paid to disentangling the latent representations for the underlying digits.

Intrinsic Faces Multi-MNIST

x

i `s

r x

i`

r

s

xak

xkzk

yk

K

K

x

K

ak

xk

hk

zk

yk

hk�1

K

Generative Model Recognition Model Generative Model Recognition Model

Figure 5: Generative and recognition models for the intrinsic-faces and multi-MNIST experiments.

8

Nuisance

Pixels
Label

Pixels

Transformation

Count

Inference model

(recurrent neural network)

Inference: counting and locating

Input Reconstruction Decomposition

M
M+N Count Error (%)

w/o MNIST w/ MNIST

0.1 85.45 (± 5.77) 76.33 (± 8.91)
0.5 93.27 (± 2.15) 80.27 (± 5.45)
1.0 99.81 (± 1.81) 84.79 (± 5.11)

Figure 6: Left: Example input multi-MNIST images and reconstructions. Top-Right: Decomposition
of Multi-MNIST images into constituent MNIST digits. Bottom-Right: Count accuracy over
different supervised set sizes M for given dataset size M + N = 82000.

Here, the generative model presumes the availability of individual MNIST-digit images, generating
combinations under sampled affine transformations. In the second experiment, we extend the above
model to now also incorporate the same pre-trained MNIST model from the previous section, which
allows the generative model to sample MNIST-digit images, while also being able to predict the
underlying digits. This also demonstrates how we can leverage compositionality of models: when
a complex model has a known simpler model as a substructure, the simpler model and its learned
weights can be dropped in directly.

The count accuracy errors across different supervised set sizes, reconstructions for a random set of
inputs, and the decomposition of a given set of inputs into their constituent individual digits, are
shown in Fig. 6. All reconstructions and image decompositions shown correspond to the nested-model
configuration. We observe that not only are we able to reliably infer the counts of the digits in the
given images, we are able to simultaneously reconstruct the inputs as well as its constituent parts.

4 Discussion and Conclusion

In this paper we introduce a framework for learning disentangled representations of data using
partially-specified graphical model structures and semi-supervised learning schemes in the domain of
variational autoencoders (VAEs). This is accomplished by defining hybrid generative models which
incorporate both structured graphical models and unstructured random variables in the same latent
space. We demonstrate the flexibility of this approach by applying it to a variety of different tasks
in the visual domain, and evaluate its efficacy at learning disentangled representations in a semi-
supervised manner, showing strong performance. Such partially-specified models yield recognition
networks that make predictions in an interpretable and disentangled space, constrained by the structure
provided by the graphical model and the weak supervision.

The framework is implemented as a PyTorch library [25], enabling the construction of stochastic
computation graphs which encode the requisite structure and computation. This provides another
direction to explore in the future — the extension of the stochastic computation graph framework to
probabilistic programming [8, 34, 35]. Probabilistic programs go beyond the presented framework to
permit more expressive models, incorporating recursive structures and higher-order functions. The
combination of such frameworks with neural networks has recently been studied in Le et al. [22] and
Ritchie et al. [28], indicating a promising avenue for further exploration.

Acknowledgements

This work was supported by the EPSRC, ERC grant ERC-2012-AdG 321162-HELIOS, EPSRC
grant Seebibyte EP/M013774/1, and EPSRC/MURI grant EP/N019474/1. BP was supported by The
Alan Turing Institute under the EPSRC grant EP/N510129/1. FW and NDG were supported under
DARPA PPAML through the U.S. AFRL under Cooperative Agreement FA8750-14-2-0006. FW was
additionally supported by Intel and DARPA D3M, under Cooperative Agreement FA8750-17-2-0093.

9

Input Recon. Varying Identity

Input Recon. Varying Lighting

Identity Lighting

Ours
(Full Supervision)

1.9% (± 1.5) 3.1% (± 3.8)

Ours
(Semi-Supervised)

3.5% (± 3.4) 17.6% (± 1.8)

Jampani et al. [11]
(plot asymptotes)

⇡ 30 ⇡ 10

Figure 4: Left: Exploring the generative capacity of the supervised model by manipulating identity
and lighting given a fixed (inferred) value of the other latent variables. Right: Classification and
regression error rates for identity and lighting latent variables, fully-supervised, and semi-supervised
(with 6 labelled example images for each of the 38 individuals, a supervision rate of ⇢ = 0.5,
and ↵ = 10). Classification is a direct 1-out-of-38 choice, whereas for the comparison, error is a
nearest-neighbour loss based on the inferred reflectance. Regression loss is angular distance.

3.3 Multi-MNIST

Finally, we conduct an experiment that extends the complexity from the prior models even further.
Particularly, we explore the capacity of our framework to handle models with stochastic dimension-
ality – having the number of latent variables itself determined by a random variable, and models
that can be composed of other smaller (sub-)models. We conduct this experiment in the domain of
multi-MNIST. This is an apposite choice as it satisfies both the requirements above – each image can
have a varying number of individual digits, which essentially dictates that the model must learn to
count, and as each image is itself composed of (scaled and translated) exemplars from the MNIST
data, we can employ the MNIST model itself within the multi-MNIST model.

The model structure that we assume for the generative and recognition networks is shown in Fig. 5.
We extend the models from the MNIST experiment by composing it with a stochastic sequence
generator, in which the loop length K is a random variable. For each loop iteration k = 1, . . . , K,
the generative model iteratively samples a digit yk, style zk, and uses these to generate a digit image
xk in the same manner as in the earlier MNIST example. Additionally, an affine tranformation is also
sampled for each digit in each iteration to transform the digit images xk into a common, combined
canvas that represents the final generated image x, using a spatial transformer network [10].

In the recognition model, we predict the number of digits K from the pixels in the image. For each
loop iteration k = 1, . . . , K, we define a Bernoulli-distributed digit image xk. When supervision is
available, we compute the probability of xk from the binary cross-entropy in the same manner as in
the likelihood term for the MNIST model. When no supervision is available, we deterministically set
xk to the mean of the distribution. This can be seen akin to providing bounding-boxes around the
constituent digits as supervision for the labelled data, which must be taken into account when learning
the affine transformations that decompose a multi-MNIST image into its constituent MNIST-like
images. This model design is similar to the one used in DRAW [9], recurrent VAEs [3], and AIR [4].

In the absence of a canonical multi-MNIST dataset, we created our own from the MNIST dataset by
manipulating the scale and positioning of the standard digits into a combined canvas, evenly balanced
across the counts (1-3) and digits. We then conducted two experiments within this domain. In the
first experiment, we seek to measure how well the stochastic sequence generator learns to count
on its own, with no heed paid to disentangling the latent representations for the underlying digits.

Intrinsic Faces Multi-MNIST

x

i `s

r x

i`

r

s

xak

xkzk

yk

K

K

x

K

ak

xk

hk

zk

yk

hk�1

K

Generative Model Recognition Model Generative Model Recognition Model

Figure 5: Generative and recognition models for the intrinsic-faces and multi-MNIST experiments.

8

Transformation

Count

Inference model

(recurrent neural network)

Real-world examples: molecule generation

Recap!
• Probabilistic programming languages can make writing probabilistic models, and

doing inference, faster and more efficient

• Big challenge: Bayesian inference is, in general, pretty hard. But:

• … restricting the probabilistic programming language can help keep inference
more tractable

• … even in unrestricted models, it’s possible to define algorithms which will still
work (though computational / statistical efficiency is not guaranteed…)

• Deep learning can be useful for amortized inference and for model learning

• An Introduction to Probabilistic Programming https://arxiv.org/abs/1809.10756

• Frank Wood’s graduate course: https://www.cs.ubc.ca/~fwood/CS532W-539W/

https://arxiv.org/abs/1809.10756
https://www.cs.ubc.ca/~fwood/CS532W-539W/

Thanks!

