Hyperparameter tuning with search space partition: investigating LA-MCTS

Qianyi Liu

Background

- Hyperparameter tuning of large-scale deep learning models
 - computationally expensive
 - high-dimensional search space
- Want fast and efficient hyper-parameter tuning algorithms
- A black-box optimisation problem
- Bayesian Optimisation / Evolutionary search methods: efficient in lower-dimensional spaces
- Partition the hyperparameter space into smaller subspaces
- LA-MCTS: learn to partition the search space using MCTS + Bayesian Optimisation on promising regions

LA-MCTS

- Learns to partition the search space for Bayesian Optimisation
- Evaluated against baselines on RL tasks and synthetic functions

Goals of this project

- Investigate how LA-MCTS can be applied to tuning hyperparameters of deep neural networks (e.g. ResNet)
 - Mentioned that can be applied to hyper-parameter optimisation
 - Few examples online for this use case
 - Interesting to investigate how this can be done
- Explore how LA-MCTS can be expanded to support parallel tuning
 - Necessary for computational intensive tasks like hyperparameter tuning
 - High cost of doing sampling and evaluation

Parallelism approaches for MCTS

Directions

- Leaf level parallelisation
 - GPyOpt: parallel Bayesian optimization
 - Extend to distributed tuning?
- Root parallelisation
 - Start multiple LA-MCTS processes, combine the results in the end
 - Since there is no persistent tree structure, essentially just combining the set of samples
 - Ray Tune

Workplan

- Preliminary research
 - \circ Read the relevant papers on LA-MCTS \checkmark
 - \circ Get familiar with the codebase of LA-MCTS \swarrow
 - \circ Identify potential places and approaches for parallelism \bigvee ?
- Implementation + Evaluation
 - Application in hyperparameter tuning
 - > Tune hyperparameters of ResNet, compare with vanilla BO baseline
 - Parallel-optimisation extensions
 - Implement the two methods
 - Evaluate how they scale
- Write Up

Questions