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Background

» Circuit design: arrange electronic components to form a functional and
optimized circuit.

 ltis critical to create efficient and powerful computer systems.

 However, it is an intricate and time-consuming process, often requiring
extensive human expertise and iteration.

» Solution: Reinforcement Learning (RL) lets systems learn optimal
behaviors by trial and error, automating and enhancing circuit design.

« New Approach: Experiment with World Models in the RL pipeline,
enhancing an agent's ability to make informed decisions.
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World Models (1/2)

 Inspired by how humans develop mental models of the world,
understand and predict the environment using limited sensory input.

» Agent will benefit from abstract space and time representations.
» Predictive model of future = better experience-based decision-making
» World Models have 2 main components:

 Vision model (V) = Variational Autoencoder to encode observations

* Memory model (M) = Recurrent Neural Network for predictions
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World Models (2/2)

[—( environment }4 action ) def rollout (controller):
o "'' env, rnn, vae are '''
55/ ™ "' global variables '''

i ? obs = env.reset ()

— h = rnn.initial state()

;‘ VAElY) : decne = False B

; ////;_ é cumulative reward = 0

§ ) while not done:
observation ‘ i) ; > z = vae.encode (obs)

[ N C a = controller.action([z, h])

MDN4?NN(M) E 5 obs, reward, done = env.step(a)
: | h cumulative reward += reward
Id del ) J _ h = rnn.forward([a, z, h])

world moae H“m””“{””“”“ action return cumulative reward

Figure 2: Flow diagram showing how V, M, and C interacts with the environment (left).
Pseudocode for how our agent model is used in the OpenAI Gym [5] environment (right).

o

Figure 1: We build probabilistic generative models of OpenAl Gym [5] environments. These models
can mimic the actual environments (left). We test trained policies in the actual environments (right).
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Park (1/2)

» Open-source platform to experiment with RL for computer systems.
» Abstracts away the complexity of running experiments in real systems.
« Support 12 different computer system environments:

* Switch Scheduling

Server Load Balancing

Adaptive video streaming
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Park (2/2)

Video streaming bitrate adaptation

Spark scheduling
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(i) Multi-dim indexing
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(k) Load balancing

(1) Switching scheduling




Contribution

« State-of-the-art models for RL in circuit design uses Graph
Convolutional Neural Networks.

* Apply World Models to circuit design problems.
* VAE to encode circuit schematics into compact latent variables.
 RNN to predict how latent space changes given component tweaks.

* Output fed to evolutionary control network (decision-making).
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Expected Results

« World models able to accurately emulate circuit simulations in training.
« Evolution finds competitive policies using learnt model.

» Hopefully: outperform black-box Bayesian Optimisation in same or
smaller amount of number of steps.

« Leverage Park’s standardized benchmarks to compare techniques.
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Progress

 Literature review, both on current approaches to optimizing circuit
design and implementations of World Models.

» Explored Park’s documentation and existing benchmarks.
 To Do:
* Implementation + Evaluation

« If given the time, try combine GCNN with World Model or/and expand
the Controller model beyond a simple evolution-based optimization
strategy.

« Write up.
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