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Prior WOrk: OtterTune D. Aken et al. 2017 Automatic Database Management

System Tuning Through Large-scale Machine Learning
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Important work: OtterTune

® An ML-based automatic DBMS configuration tuning system



Prior Work: OtterTune
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Figure 10: Efficacy Comparison (MySQL) — Throughput and latency
measurements for the TPC-C benchmark using the (1) default configu-
ration, (2) OtterTune configuration, (3) tuning script configuration, (4)
Lithuanian DBA configuration, and (5) Amazon RDS configuration.
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Figure 11: Efficacy Comparison (Postgres) — Throughput and latency
measurements for the TPC-C benchmark using the (1) default configura-
tion, (2) OtterTune configuration, (3) tuning script configuration, (4) expert
DBA configuration, and (5) Amazon RDS configuration.

Evaluation of OtterTune: human-comparable efficacy on configuration tuning



Problems

Problems with evaluation of prior works (not just OtterTune):

Mismatch between experimental and real-world DBMS deployments

e Workload Complexity

e System Complexity
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Figure 2: DBMS Tuning Comparison — Throughput measurements for the TPC-C benchmark running on three versions of MySQL (v5.6, v5.7, v8.0) and
Postgres (v9.3, v10.1, v12.3) using the (1) default configuration, (2) buffer pool & redo log configuration, (3) GPR configuration, and (4) DDPG configuration.



Problems

Problems with evaluation of prior works (not just OtterTune):

Mismatch between environmental and real-world DBMS deployments

e Workload Complexity
System Complexity
e Operating Environment

e | ocal Storage e Non-Local Storage
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Figure 3: Operating Environment - I/O latency of local versus non-local storage for four different I/O workloads over a three-day period.



Methodology: Field Study

Field Study in real-world enterprise production environment:
Evaluating OtterTune framework at Société Générale (SG), a multi-national bank

e Target database application: TicketTracker
O (a private issue tracking system)
o DBMS backend: Oracle



Methodology: Environmental Settings

e database: Snapshots
O using the Oracle Recovery Manager tool
e workload: trace Collection & Replay
O TicketTracker workload trace collected by
Oracle’s Real Application Testing (RAT)
® deployment: on cloud VMs with non-local storage



Methodology: More Tuning Algorithms
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Figure 6: GPR/DNN Tuning Pipeline - The raw data for each previous workload is aggregated and compared with the target workload. Data from the most
similar previous workload is then merged with the target workload data to build a machine learning model (DNN or GPR). Finally, the algorithm recommends

the next configuration to run by optimizing the model.
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DDPG Neural Networks

Data Repository Replay Memory
T rocess 7 é
p “| fetchtop / train Critic O-value
— P ‘ ' ’—>

\/<> rawdata | = > | training tuples i ‘

T o *ranked by error | J knobs | metrics
[knobs, metrics] o5 training batch predict knop
[state, action, reward] S Actor _:>semng
updateranking T T =~-o_ _ metrics

Figure 7: DDPG Tuning Pipeline - The raw data is converted to states, actions, and rewards and then inserted into the replay memory. The tuples in the
replay memory are ranked by the error of the predicted Q-value. In the training process, the critic and actor are updated with a batch of the top tuples. After
training, the prediction error in the replay memory is updated, and the actor recommends the next configuration to run.



Evaluation: Basic Strategies
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Figure 8: Performance Variability — Performance for the TicketTracker
workload using the default configuration on multiple VMs over six months.

Baseline: Latin Hypercude Sampling (LHS)
Target metric: DB Time

Initial evaluation of the variability in the performance measurements for SG’s

environment:

40RO

O Oracle DBMS on multiple VMs on the same physical machine (shared storage)
O measured the performance of multiple VMs once a week over six months

VMO1
VMO02
VMO03
VMO04
VMO05



Evaluation: Basic Strategies 5
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Figure 9: Effect of I/O Latency Spikes — Runtime measurements of DBMS
performance with CPU utilization and I/O latency.

e Baseline: Latin Hypercude Sampling (LHS)

® Target metric: DB Time
e Initial evaluation of the variability in the performance measurements for SG’s

environment:
O Measure DBMS'’s performance with CPU time and I/O latency for one VM during

a tuning session



Evaluation: Basic Strategies

® Baseline: Latin Hypercude Sampling (LHS)

® Target metric: DB Time

e [nitial evaluation of the variability in the performance measurements for SG’s
environment

Given performance variability :
=> 3 tuning sessions on 3 VMs

=> for evaluating a tuned configuration from each tuning session, run the workload with it
on DBMSs on 3 VMs for 3 times (92 times in total)

e overall performance of the configuration => average across all executions



Evaluation: Tuning Knobs Selected by human DBAs
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Figure 10: Tuning Knobs Selected by DBA (Per VM) — The performance improvement of the best configuration per algorithm running on separate VMs
relative to the performance of the SG default configuration measured at the beginning of the tuning session.
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Figure 11: Tuning Knobs Selected by DBA - Performance measure-

ments for 10, 20, and 40 knob configurations for the TicketTracker workload.
The shading on each bar indicates the minimum and maximum performance
of the optimized configurations from three tuning sessions.



Evaluation: Tuning Knobs Ranked by OtterTune
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Figure 12: Tuning Knobs Ranked by OtterTune (Per VM) - The performance improvement of the best configuration per algorithm running on separate
VMs relative to the performance of the SG default configuration measured at the beginning of the tuning session.

e {I performances of best configuration per
algorithm on different VMs
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Figure 13: Tuning Knobs Ranked by OtterTune - Performance mea-
surements for the ML algorithm configurations using 10 and 20 knobs
selected by OtterTune’s Lasso ranking algorithm. The shading on each
bar indicates the minimum and maximum performance of the optimized
configurations from three tuning sessions.



Evaluation: Adaptability to Different Workload
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Flgure 14 Adaptablllty to Different Workloads — Comparison when
v ‘e model trained on TPC-C data to the TicketTracker workload.

Knob Name Default Best Observed

DB_CACHE_SIZE 4 GB 20-30 GB
DB_32K_CACHE_SIZE 10 GB 15 GB
OPTIMIZER_FEATURES_ENABLE v11.2.04 v12.2.0.1

Table 2: Most Important Knobs — The three most important knobs for
the TicketTracker workload with their default and best observed values.



Criticism

Novelty/Advantages

® Production-level environments for evaluating SOTA methods
® Provide valuable environment results for reference in later works

Limitations

e Poor Reproducibility (almost infeasible for small research groups)

e Limited Scope / Not sufficient diversity of workloads,

® Many trivial observations in experiment part consisting of a hard-to-read long text
(information scattered) and no good summary of single parts of experiments

® Lack in-depth analysis for certain algorithms



Discussion
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