Placeto: Learning
Generalizable Device
Placement Algorithms
for Distributed Machine
Learning

R. Addanki, S. B. Venkatakrishnan, S. Gupta, H.
Mao, M. Alizadeh

Presenter: Qianyi Liu

Background

Key challenge for distributed training: split a large model across multiple
heterogeneous devices to achieve the fastest possible training speed

Typical approach: left to
human experts

A new solution: automated
approach to device placement
based on reinforcement
learning

Prior works

e Mirhoseini et al (2017): train an RNN to process a computation graph and

predict a placement for each operation

e Mirhoseini et al (2018): a hierarchical model, improved scalability and new
optimisation techniques

Placement

Environment

L 3 Runtime

Update
Placement

Key drawbacks:

Long time

Don't learn
generalisable device
placement strategy ->
requires retraining

Placeto

e Use RL to learn an efficient algorithm for device placement for a given family of

computation graphs
e Two key ideas:

Idea 1: Find a sequence of iterative placement improvements
o Simpler to learn — training efficiency 1
Idea 2: use graph embeddings to encode the computation graph structure

o Doesn’t depend on sequential order of nodes
o GNN + message passing
o Generalisability 1

Learning procedure: a Markov decision
process

Placement improvement MDP steps Final placement
Action ay: Action ay: Action agj: Action a,:
Device 2 Device 1 Device 2 Device 2
ﬁ ﬁ ﬁ ﬁ —— »

Step t=0 Step t=1 Step t=2 Step t=3 End of episode

RL to learn the MDP policy - a neural
network

State s, RL agent Next state s,,,
Device 1 Folicy
—
Graph .
neural —> n::l/:/i)yrk '
Current network Device 2 Sample
el }b—— .
node -/~ | New
placement

! Reward r, = Runtime(s;,;) - Runtime(s;)

Runtime(s;) Runtime(s;44)

Graph embedding step 1: Compute
per-group attributes

(a)

Op group feature:
(total_runtime,
output_tensor_size,
current_placement,
is_node_current,
is_node_done)

Graph embedding step 2: Local
neighbourhood summarisation

Top-down (b) e A sequence of message passing
message steps to aggregate neighbourhood
passin

information for each node

Xy Q(Zueg(v) f(xu)).

Bottom-up e Two directions: top-down +

message bottom-up
passing

Graph embedding step 3: Pooling

summaries
(€©) parent /N (d)
groups ! O + O :
_______________ e Create a global
Child /7~ , Summary of the
E groups ! O + O entire graph, from
EParalleI """"""""" the point of view of
igroups e
' node v

Parallel{ O"'O"'O
groups !

Child-. ; Current
groups ...~ node

Full picture

State s, RL agent Next state s,
Device 1 Policy
—
Graph .
> neural —> n::\:z'k :
Current network Device 2 Sample |
node |7 > O 1 New
placement

KTSeward r.= Runtime(s,4) - Runtime(s;)
"

Runtime(s;) Runtime(s.4)

e Rewards are generated from a simulator rather than actual hardware
measurement during training

Evaluation: performance

Metric:

Runtime of the best placement found

Time taken to find the best placement (# of placement evaluations)

Placement runtime Training time Improvement
(sec) (# placements sampled)
CPU Single RNN- RNN- Runtime Speedup
Model il GPU #GPUs Expert Scotch Placeto biased Placeto biged Redictici Eacton
. N — - 2, 1.28 1.54 1.18 1.17 1.6K 7.8K -0.85% 4.8 x
noephion- ' ‘ 4 115 174 1.13 119 | 58K 358K 5% 6.1 x
. o BOM 2 OOM OOM 2.32 2.35 204K 73K 1.3% 3.5 x
’ 4 OOM OOM 2.63 3.15 94 K 51.7K 16.5 % 0.55 x
2 0.86 1.28 0.86 0.89 35K 16.3K 3.4% 4.7 x
NASNet 375 1.28
4 0.84 1.22 0.74 0.76 29 K 37K 2.6% 1.3 x

CDF Probability
o o o o
N o @

o
=)

CDF Probability
o o o o
N » o

o
=]

Evaluation: generalisability

1.0 1.5 2.0 2.5
Runtime (in seconds)

(a)

Runtime (in seconds)

(d)

3.0

3.5

CDF Probability
e o 9o 9o
N e o @

o
o

CDF Probability
o e e S
N » o @

o
o

4.0

’

4.0 4.5 5.0 5.5 6.0 6.5
Runtime (in seconds)
(b)
&
- ’r’b
- "
Pl 4
’l I’I
7 fJ,
/
/l/'l
/‘/,’
4.5 5.0 5.5 6.0 6.5

Runtime (in seconds)

(e)

CDF Probability
o o o o
N B O

o
o

CDF Probability
o o o o
N B O ®

o
=)

1.0

1.5 2.0 2.5

Runtime (in seconds)

()

2.0 2.5
Runtime (in seconds)

V)

3.0

Placeto Zero-
Shot

Random

Placeto
Optimized

RNN Zero-Shot

Random

RNN Optimized

Takeaways

Pros:

e Novelty: first attempt to use GNN to encode graph structure in device placement
optimisation — learns generalisable placement policy
e Impressive performance: find better placements faster than RNN-based

approach
Cons:

e Operator needs to be manually grouped based on heuristics — not an
end-to-end solution
e Generalisability is limited to graphs from the same family

Discussion

