Placeto: Learning Generalizable Device Placement Algorithms for Distributed Machine Learning

R. Addanki, S. B. Venkatakrishnan, S. Gupta, H. Mao, M. Alizadeh

Presenter: Qianyi Liu

Background

Key challenge for **distributed training**: split a large model across multiple heterogeneous devices to achieve the fastest possible training speed

- Typical approach: left to human experts
- A new solution: automated approach to device placement based on reinforcement learning

Prior works

- Mirhoseini et al (2017): train an RNN to process a computation graph and predict a placement for each operation
- Mirhoseini et al (2018): a hierarchical model, improved scalability and new optimisation techniques

Key drawbacks:

- Long time
 - Don't learn generalisable device placement strategy -> requires retraining

Placeto

- Use RL to learn an efficient algorithm for device placement for **a given family of computation graphs**
- Two key ideas:

Idea 1: Find a sequence of iterative placement improvements

 $\circ \quad \text{Simpler to learn} \rightarrow \text{training efficiency} \uparrow$

Idea 2: use graph embeddings to encode the computation graph structure

- Doesn't depend on sequential order of nodes
- GNN + message passing
- \circ Generalisability \uparrow

Learning procedure: a Markov decision process

RL to learn the MDP policy – a neural network

Graph embedding step 1: Compute per-group attributes

Graph embedding step 2: Local neighbourhood summarisation

• A sequence of message passing steps to aggregate neighbourhood information for each node

$$\mathbf{x}_v \leftarrow g(\sum_{u \in \xi(v)} f(\mathbf{x}_u)),$$

 Two directions: top-down + bottom-up

Graph embedding step 3: Pooling summaries

 Create a global summary of the entire graph, from the point of view of node v

Full picture

• Rewards are generated from a simulator rather than actual hardware measurement during training

Evaluation: performance

Metric:

- 1) Runtime of the best placement found
- 2) Time taken to find the best placement (# of placement evaluations)

	Placement runtime							Training time		Improvement	
	(sec)						(# placements sampled)				
Model	CPU	Single	#GPUs	Expert	Scotch	Placeto	RNN-	Placeto	RNN-	Runtime	Speedup
	only	GPU	#01 03				based		based	Reduction	factor
Inception-V3	12.54	1.56	2	1.28	1.54	1.18	1.17	1.6 K	7.8 K	- 0.85%	4.8 ×
			4	1.15	1.74	1.13	1.19	5.8 K	35.8 K	5%	6.1 ×
NMT	33.5	OOM	2	OOM	OOM	2.32	2.35	20.4 K	73 K	1.3 %	3.5 ×
			4	OOM	OOM	2.63	3.15	94 K	51.7 K	16.5 %	0.55 ×
NASNet	37.5	1.28	2	0.86	1.28	0.86	0.89	3.5 K	16.3 K	3.4%	4.7 ×
			4	0.84	1.22	0.74	0.76	29 K	37 K	2.6%	1.3 ×

Evaluation: generalisability

Takeaways

Pros:

- Novelty: first attempt to use GNN to encode graph structure in device placement optimisation learns generalisable placement policy
- Impressive performance: find better placements faster than RNN-based approach

Cons:

- Operator needs to be manually grouped based on heuristics not an end-to-end solution
- Generalisability is limited to graphs from the same family

Discussion