Placeto: Learning Generalizable Device Placement Algorithms for Distributed Machine Learning

R. Addanki, S. B. Venkatakrishnan, S. Gupta, H. Mao, M. Alizadeh

Presenter: Qianyi Liu

Background

Key challenge for distributed training: split a large model across multiple heterogeneous devices to achieve the fastest possible training speed

- Typical approach: left to human experts
- A new solution: automated approach to device placement based on reinforcement learning

Prior works

- Mirhoseini et al (2017): train an RNN to process a computation graph and predict a placement for each operation
- Mirhoseini et al (2018): a hierarchical model, improved scalability and new optimisation techniques

Key drawbacks:

- Long time
- Don't learn generalisable device placement strategy -> requires retraining

Placeto

- Use RL to learn an efficient algorithm for device placement for a given family of computation graphs
- Two key ideas:

Idea 1: Find a sequence of iterative placement improvements

- Simpler to learn \rightarrow training efficiency \uparrow

Idea 2: use graph embeddings to encode the computation graph structure

- Doesn't depend on sequential order of nodes
- GNN + message passing
- Generalisability \uparrow

Learning procedure: a Markov decision process

RL to learn the MDP policy - a neural network

Graph embedding step 1: Compute per-group attributes

Graph embedding step 2: Local neighbourhood summarisation

- A sequence of message passing steps to aggregate neighbourhood information for each node
$\mathbf{x}_{v} \leftarrow g\left(\sum_{u \in \xi(v)} f\left(\mathbf{x}_{u}\right)\right)$,
- Two directions: top-down + bottom-up

Graph embedding step 3 : Pooling summaries

- Create a global summary of the entire graph, from the point of view of node v

Full picture

- Rewards are generated from a simulator rather than actual hardware measurement during training

Evaluation: performance

Metric:

1) Runtime of the best placement found
2) Time taken to find the best placement (\# of placement evaluations)

	Placement runtime (sec)							Training time(\# placements sampled)		Improvement	
Model	$\begin{aligned} & \text { CPU } \\ & \text { only } \end{aligned}$	Single GPU	\#GPUs	Expert	Scotch	Placeto	RNN- based	Placeto	RNNbased	Runtime Reduction	Speedup factor
			2	1.28	1.54	1.18	1.17	1.6 K	7.8 K	- 0.85\%	$4.8 \times$
Inception-V3	12.54	1.56	4	1.15	1.74	1.13	1.19	5.8 K	35.8 K	5\%	$6.1 \times$
NMT		00M	2	OOM	OOM	2.32	2.35	20.4 K	73 K	1.3 \%	$3.5 \times$
NM	33.	OOM	4	OOM	OOM	2.63	3.15	94 K	51.7 K	16.5 \%	$0.55 \times$
NASNet		1.28	2	0.86	1.28	0.86	0.89	3.5 K	16.3 K	3.4\%	$4.7 \times$
NASN	37.5	1.28	4	0.84	1.22	0.74	0.76	29 K	37 K	2.6\%	$1.3 \times$

Evaluation: generalisability

Takeaways

Pros:

- Novelty: first attempt to use GNN to encode graph structure in device placement optimisation - learns generalisable placement policy
- Impressive performance: find better placements faster than RNN-based approach

Cons:

- Operator needs to be manually grouped based on heuristics - not an end-to-end solution
- Generalisability is limited to graphs from the same family

Discussion

