B UNIVERSITY OF
P CAMBRIDGE

Bolt: Bridging the Gap Between Auto-
Tuners and Hardware-Native
Performance

Jiarong Xing, Leyuan Wang, Shang Zhang, Jack Chen, Ang Chen, Yibo Zhu

R244: Large Scale Data Processing and Optimization
Pedro Sousa



Background

» Auto-tuners transform a tensor program into an equivalent but
structurally different tensor for higher performance on a target hardware.

« Hardware-agnostic auto-tuners (e.g. Ansor) generate efficient tensor
programs by searching a large search space.

» For certain workloads, they perform worst than hardware-native vendor
tuned libraries (e.g. cuBLAS and cuDNN).

 E.g.: NVIDIA GPUs have special hardware architectures that Ansor
cannot leverage since it uses an opaque hardware model.

 However, hardware libraries are not perfect either since they have fixed
primitives and lack the customization of auto-tuners.

7@ UNIVERSITY OF

- IR

“§> CAMBRIDGE




* Opportunity:

« Emerging trends of modularized, templated libraries (e.g. NVIDIA
CUTLASS).

» Templates are parameterized and can be initiated to fit different
hardware and workloads.

 Templated libraries consider device details and extract hardware
performance.

BOLT enables end-to-end optimizations that bridge the gap
between auto-tuners and hardware-native performance.

7@ UNIVERSITY OF

%8> CAMBRIDGE



BOLT Key Differentiators

1. Leverages templated libraries

for joint graph, operator, and ConNmodel BT IOI
model level optimizations. MEMEHE,_,»’ — re;:.,, —
codesign - I
. (Section 3.3) er fusion )

2. Enables novel persistent kernel e *---.._._ﬁmm.m
fusion for deeper operator Cptinized felay eraeh .
fusion at graph level. oot Graph partition '

(Section 3.2) Enltiu;f h \‘.
y grap TV subgraph

3. Automates templated code * |

. . _ . ", Perf profiler 1
generation via light-weight { Cotonr Codegen
profiler and direct code ; Vi

. Tensor program
generation.

Figure 3. The workflow of Boll. Blue boxes are our contributions.

4. System-friendly model design
principles (e.g. exploring
activations).

=@z UNIVERSITY OF

“ X

“§> CAMBRIDGE




Graph-level: deeper operator fusion 1/3

* New optimizations introduced to the device libraries via template
customization.

* Persistent kernel fusion: computes multiple operators using only one
kernel, leading to deeper operator fusion.

» Benefits of fusing GEMMSs or Convs into a single operator:
1. No memory traffic for storing and loading inter-layer activations.
2. No launch latency.

3. Larger optimization scope.

7@ UNIVERSITY OF

%8> CAMBRIDGE



Graph-level: deeper operator fusion 2/3

* When 2 GEMMI/Conv operations
are fused together, the main
computation loops run back-to-
back in a single fused kernel.

» The output activation of the first
GEMMI/Conv stays in faster GPU
memory.

« Bolt automatically detects
opportunities to use persistent
kernels in the computational
graph and generates the CUDA
code by creating new templates in
CUDLASS.

7@ UNIVERSITY OF

- IR

“§> CAMBRIDGE

Mon-fused:

GEMM1 [— Bias [— ReLU [— GEMM2 [— Bias

—| RelU

Epilogue fusion:

GEMBM1 | Bias | RelUl GEMKZ | Bias | RelU
Persistent kemel fusion:
GEMBM1 | Bias | RelU | GEMM2 | Bias | RelLL)

(a) The graph view of persistent kernel fusion

Mon-fused:
GEMMicony 0
Launch | Load Activation |, L2984 Store Activation
bain Loop
GEMM/conwv 1
Launch | Load Activation |, k284 Store Activation
Fused: e
Launch|Load Activation Store Activation
Waighis
Main Loop | Main Loop

(b} The kemel view of persistent kernel fusion




Graph-level: deeper operator fusion 3/3

Threadblock residence:

Used when the threadblock size remains the same
between operations.

Each threadblock works independently on a tile of
the output matrix/activation.

Register-file (RF) residence fusion:

Used when the next operator’s weights can fit
entirely within a threadblock’s warp tiles.

Keeps the output activations from the previous op in
the register file without writing to shared memory.

Shared-memory resident fusion:

Used when next GEMM/Conv needs data from
multiple warp tiles, writing the output activation tiles
from RF to shared memory.

= UNIVERSITY OF

> CAMBRIDGE

T
NOVK 1 Wil _
Wi a
2 2
KD
Thread [Thread
Block Block
M
A0 DovA1 D1

GEMM 0 GEMM 1

Figure 5. [llustration of threadblock-residence of GEMM fusion.
Colored boxes represent one single threadblock. This requires
ThreadBlock( N = NO, ThreadBlock1 N = N1.

o (SMEM)
[SMEM} H W fragment

w

B I .

wo |
AD tile | DOfA tile | | D1 tile
Seereerermrr S et (RF)

ThreadBlock of GEMM 1 Warp tile of GEMM 1

(RF)

At fragment

Figure 6. RF-resident fusion in a threadblock of back-to-back
GEMMs. The threadblock and warp size requirements are:
Warp(0 _N=ThreadBlock0 _N=MN0, Warpl N=ThreadBlockl N=N1.

LoswEmMy

(SMEN) Wi Fragmerts
Tl wili [REI[irF ]
HIEHIEE |
i =
AD tile | Dovad tile D1tile || DA tiles
ThreadBlock of GEMM 1 Warp tiles of GEMM 1

Figure 7. Shared memory-resident fusion in a threadblock of back-
to-back GEMMs. The threadblock size requirements are: Thread-
BlockO N = NO # Warp0O_N, ThreadBlockl N = N1 # Warpl M.




Operator-level: automating templated code

generation 1/2

« Templates only support a subset of operators, struggling to provide
complete functionality for end-to-end models.

» Bolt uses Bring Your Own Compiler:

* Reuse existing compiler stacks (e.g. TVM) and focus only on the
optimization and generating code for the target device templates.

* Lightweight Profiler:

« Searches template parameters space efficiently using hardware
details.

» Generates samples covering possible threadblocks/warp sizes, data
types, eftc.

7@ UNIVERSITY OF

- IR

“§> CAMBRIDGE




Operator-level: automating templated code

generation 2/2

* Low-level tensor implementations by instantiating templates using best
parameters from profiler.

» Generates CUDA code following template conventions instead of
invoking blackbox functions.

« Extend templates to support new customized optimizations:
« Layout transforms: change compute layout without graph edits.

« Padding for alignment: pad unaligned tensors to use alignment 8,
enabling tensor core acceleration and reducing memory loading time.

7@ UNIVERSITY OF

%8> CAMBRIDGE



Model-level: designing system-friendly models

« System-model codesign helps build models that run more efficiently.
« Three main principles identified by BIt:

1. Exploring different activation functions with epilogue fusion.

2. Deepening models with 1x1 Convs.

3. Aligning tensor shapes to use GPUs more efficiently.

7@ UNIVERSITY OF

- IR

“§> CAMBRIDGE




Evaluating GEMM/Conv2D performance

Bolt achieves significantly higher performance when compared to Ansor,
motivated by its tuning strategy based on hardware-native templates.

10~ [Ansor BN Boh B | 4 |ansce I Boht A |
= 35
B
! b
g B - T 25
2
§ ar g 15
2 = 1
0.5 N
5 s 2
32 Ta‘&a Té’m 3‘04.9 552 Sse 82 1 PO el 42 2 S 42 g T 5
?EE‘};E& 307 ?Eﬂ‘}ﬁﬂ, ?5839}2 Eﬂqﬂ'é‘ﬂqﬂ. 02y 102, B2 ¢ Iﬂﬁeeé"ﬁ‘ﬁ *;3552{?2256 11,51 ?9??22523“ 1
Workload (MN_K) Waorkload ((H, W1, (IC, OC), strides)

(a) GEMMs performance. (k) Conv2D performance.

Figure 8. The performance of Bolt on GEMMs and Conv2Ds. Figure 8a shows the speed of GEMMs in BERT with batch size=32 and
sequence length=40 and two square GEMMs. Figure 8b shows the speed of 3 = 3 Conv2Ds in ResNet-50. The batch size=32 and all
Conv2Ds use (1, 1) zero padding.

UNIVERSITY OF

CAMBRIDGE




Evaluating persistent kernel fusion performance

« Baseline is Bolt using only epilogue fusion that computes the two
GEMMSs/Conv2D sequentially.

» Persistent kernel fusion accelerates the computations by 1.2x-1.5x for
back-to-back GEMMs and by 1.1x-2.0x for back-to-back Conv2Ds.

Table 2. The performance of fusing two back-to-back ConviDs

Table 1. The performance of fusing two back-to-back GEMMs ~ USIng P“*"i"“—"“F kernels. Hach Conv2D is followed by “B_i“&'ﬂ“dd
using persistent kernels. Each GEMMs is followed by a ReLU  4nd a ReLU epilogue. The 3 > 3 ConvID uses (1, 1) padding and

epilogue and all of them will be fused into one kernel. the 1 x 1 Conv2D uses (1, 1) strides and does not have padding.
15t GEMM Tnd GEMM Normalized speed 3x3 Conv2D 11 Conv2D Normalized speed

M N K M N K wio fuse.  w/ fuse. HW IC,0C strides|| HW IC,OC || wiofuse. w/ fuse.
64 1 2 2462 1 1 100 174 224 3,48 (2,2) || 1127 48,48 1.00 110
16384 64 256 || 16384 16 64 1.00 1.34 1122 48,48  (2,2) || 66 48,48 100 141
32768 128 576 || 32768 64 128 || 1.00 1.28 562 48,48 (1,1) || 567 48,48 100 1.87
128320 32 96 || 128320 96 32 1.00 1.46 24 3,64 (2,2) || 1122 64,64 100 1.24
1177 64,64 (2,2) || 56° 64,64 1.00 1.12
567 64,64 (1, 1) || 56° 64,64 1.00 2.02

UNIVERSITY OF

CAMBRIDGE




Evaluating padding performance and overhead

. Table 3. The performance and overhead of Bolt's automated
* When comparing the performance pudding. Unpadded Conv2Ds are computed with alignment=2;

: : - after being padded, alignement=8 can be used. The cost of padding
Of BOIt Wlth and WIthOUt paddlng’ 15 the time spent on the padding over the total computation time
we see that the speed can be (padding+Conv2D).
improved by 1.8x on average. N HW IC,OC kemel padding S:p’;“d- :zgﬂd Cost

32 20,26 46,32 (3,3 (LD .00 1.62 18%

° : 32 20,26 46,32 (5, 5) (2,2 1.0 195 Qo
However, the padding adds extra 2% 1419 632 57 00 |10 177 | 1s%

overhead of 16% on average 288 11,15 46,32 (57 (0,0) || LOO 171 | 18%
32020,26 174,64 (3,3)  (L1) || 100 160 || 24%
32 20,26 17464 (55  (2.2) | 100 199 | 12%

UNIVERSITY OF

CAMBRIDGE




Evaluating end-to-end optimization

« Baseline is Ansor with 900 x # of tasks for the tunning trials.

 Boltis 4.2x faster on VGG models, 1.5x on ResNet, and 2.6x on
RepVGG. On average, it improves inference speed by 2.8x.

 Bolt finishes tuning withing 20 minutes, against 12 hours average on

Ansor.
10000 -
— Ansor M Bolt A P —
'E i # FRLS
6000 |- @
é E 10*
- 4000 - e
E‘ 2000 = E 2 108
i) = = = o -
“;G'fﬁ mG-fﬂ %Mf?%sﬂﬂeﬂhﬁsﬁﬂamc{ﬂ H?'E-jﬁ. HBG'J.E' mﬁ'fﬂﬁewﬂ'ﬁjﬁewgﬁﬂﬁwvﬁﬁ_ﬂn
Models Vodle
{a) Inference speed. (b) Tunning time.

Figure 10, The normalized inference speed and tuning time for widely used convolutional neural networks.

58z UNIVERSITY OF

CAMBRIDGE



System-friendly models: RepVGG case study

Changing activation functions: Tabl . Th op- accuracy and speed of Rep VUs-AD sing dife
ent activation functions (120 epochs + simple data augmentation).
« Augment RepVGG by trying different activation Activation | Top-l accuracy  Speed (images/sec)
functions. RelLU 7231 5909
GELU 738 5645
« Results show that activation functions can Hardstwish 2% 313
: - Softplus 157 5453
indeed impact accuracy.

Table 5. The top-1 accuracy and speed of onginal RepVGG models
« Inference speed stays more or less unaffected. . e usmentation wilh 1 1 ConvzDs (200 cpochs + simple

data augmentation).

Model Top-1 accuracy Speed  Params
Deepening the model: RepVGG-AD 73.05 7861 831
RepVGG-Al 74.75 6253  12.79
_ _ o RepVGG-B0 75.28 4888  14.34
« It can improve accuracy with minimal speed RepVGGAug-AD 7387 6716 1335
RepVGGAug-Al 75.52 5241 217
lost. RepVGGAug-BO 76.02 4145 2485
Table 6. The top-1 accuracy and speed of original RepVGG models
° H 0 and their augmentation with 1 x 1 Conv2Ds+Hardswish (300
Accuracy Increases by Up to 082 A) and the epochs 4+ advanced augmentation, label smoothing, and mixup).
average speed drop is 15.3%. Model Top-1 accuracy _ Speed (images/sec)
RepVGG-AD 73.41 7861
. . RepVGG-Al 74.89 6253
Combined effect: results show that designing models Rﬁﬁvm,ﬂﬂ 2580 prons
in a system-friendly way can improve accuracy more RepVGGAug-AD 74.54 6338
o RepVGGAug-Al 76.72 4868
eff|C|entIy. RepVGGAug-BO 77.22 3842

= UNIVERSITY OF

CAMBRIDGE




« Bolt is pioneer in bridging the gap between auto-tuners and device
library information.

» Unlike existing operator fusion approaches that only fuses one
GEMMY/Conv and its adjacent operators (e.g. BiasAdd, ReLU),
persistent kernel fusion can fuse sequences of GEMMs and Convs.

* Achieves both significant inference speed ups over Ansor, while also
decreasing the tuning time.

« Automates finding optimal parameters for templates using lightweight
profiler.

 Introduces new best practices for model design for hardware efficiency.

7@ UNIVERSITY OF

- IR

“§> CAMBRIDGE




* Focused only on NVIDIA GPUs/CUTLASS library, not demonstrated for
other platforms.

» Persistent fusion benefits memory-bound operations; tradeoffs for
compute-bound operations not quantified.

» Evaluated for inference only, training use cases not explored.

* No analysis of energy efficiency — important for mobile/embedded
deployment.

* Overhead of kernel launch with persistent fusion not analyzed, only for
padding.

7@ UNIVERSITY OF

- IR

“§> CAMBRIDGE




	Bolt: Bridging the Gap Between Auto-Tuners and Hardware-Native Performance�
	Background
	Solution
	BOLT Key Differentiators
	Graph-level: deeper operator fusion 1/3
	Graph-level: deeper operator fusion 2/3
	Graph-level: deeper operator fusion 3/3
	Operator-level: automating templated code generation 1/2
	Operator-level: automating templated code generation 2/2
	Model-level: designing system-friendly models  
	Evaluating GEMM/Conv2D performance
	Evaluating persistent kernel fusion performance
	Evaluating padding performance and overhead
	Evaluating end-to-end optimization
	System-friendly models: RepVGG case study�
	Pros
	Cons

