
Bolt: Bridging the Gap Between Auto-
Tuners and Hardware-Native 
Performance

Jiarong Xing, Leyuan Wang, Shang Zhang, Jack Chen, Ang Chen, Yibo Zhu

R244: Large Scale Data Processing and Optimization
Pedro Sousa



Background

• Auto-tuners transform a tensor program into an equivalent but 
structurally different tensor for higher performance on a target hardware.

• Hardware-agnostic auto-tuners (e.g. Ansor) generate efficient tensor 
programs by searching a large search space.

• For certain workloads, they perform worst than hardware-native vendor 
tuned libraries (e.g. cuBLAS and cuDNN).

• E.g.: NVIDIA GPUs have special hardware architectures that Ansor
cannot leverage since it uses an opaque hardware model.

• However, hardware libraries are not perfect either since they have fixed 
primitives and lack the customization of auto-tuners.



Solution

• Opportunity: 

• Emerging trends of modularized, templated libraries (e.g. NVIDIA 
CUTLASS). 

• Templates are parameterized and can be initiated to fit different 
hardware and workloads.

• Templated libraries consider device details and extract hardware 
performance.

BOLT enables end-to-end optimizations that bridge the gap 
between auto-tuners and hardware-native performance.



BOLT Key Differentiators

1. Leverages templated libraries 
for joint graph, operator, and 
model level optimizations.

2. Enables novel persistent kernel 
fusion for deeper operator 
fusion at graph level.

3. Automates templated code 
generation via light-weight 
profiler and direct code 
generation.

4. System-friendly model design 
principles (e.g. exploring 
activations).



Graph-level: deeper operator fusion 1/3

• New optimizations introduced to the device libraries via template 
customization.

• Persistent kernel fusion: computes multiple operators using only one 
kernel, leading to deeper operator fusion.

• Benefits of fusing GEMMs or Convs into a single operator:

1. No memory traffic for storing and loading inter-layer activations.

2. No launch latency.

3. Larger optimization scope.



Graph-level: deeper operator fusion 2/3

• When 2 GEMM/Conv operations 
are fused together, the main 
computation loops run back-to-
back in a single fused kernel. 

• The output activation of the first 
GEMM/Conv stays in faster GPU 
memory.

• Bolt automatically detects 
opportunities to use persistent 
kernels in the computational 
graph and generates the CUDA 
code by creating new templates in 
CUDLASS. 



Graph-level: deeper operator fusion 3/3

Threadblock residence: 

• Used when the threadblock size remains the same 
between operations.

• Each threadblock works independently on a tile of 
the output matrix/activation.

Register-file (RF) residence fusion:

• Used when the next operator’s weights can fit 
entirely within a threadblock’s warp tiles.

• Keeps the output activations from the previous op in 
the register file without writing to shared memory.

Shared-memory resident fusion:

• Used when next GEMM/Conv needs data from 
multiple warp tiles, writing the output activation tiles 
from RF to shared memory. 



Operator-level: automating templated code 
generation 1/2

• Templates only support a subset of operators, struggling to provide 
complete functionality for end-to-end models.

• Bolt uses Bring Your Own Compiler:

• Reuse existing compiler stacks (e.g. TVM) and focus only on the 
optimization and generating code for the target device templates. 

• Lightweight Profiler:

• Searches template parameters space efficiently using hardware 
details.

• Generates samples covering possible threadblocks/warp sizes, data 
types, etc. 



Operator-level: automating templated code 
generation 2/2

• Low-level tensor implementations by instantiating templates using best 
parameters from profiler.

• Generates CUDA code following template conventions instead of 
invoking blackbox functions.

• Extend templates to support new customized optimizations:

• Layout transforms: change compute layout without graph edits. 

• Padding for alignment: pad unaligned tensors to use alignment 8, 
enabling tensor core acceleration and reducing memory loading time.



Model-level: designing system-friendly models  

• System-model codesign helps build models that run more efficiently.

• Three main principles identified by Blt:

1. Exploring different activation functions with epilogue fusion.

2. Deepening models with 1x1 Convs.

3. Aligning tensor shapes to use GPUs more efficiently.



Evaluating GEMM/Conv2D performance

Bolt achieves significantly higher performance when compared to Ansor, 
motivated by its tuning strategy based on hardware-native templates.



Evaluating persistent kernel fusion performance

• Baseline is Bolt using only epilogue fusion that computes the two 
GEMMs/Conv2D sequentially. 

• Persistent kernel fusion accelerates the computations by 1.2x-1.5x for 
back-to-back GEMMs and by 1.1x-2.0x for back-to-back Conv2Ds.



Evaluating padding performance and overhead

• When comparing the performance 
of Bolt with and without padding, 
we see that the speed can be 
improved by 1.8x on average.

• However, the padding adds extra 
overhead of 16% on average



Evaluating end-to-end optimization

• Baseline is Ansor with 900 x # of tasks for the tunning trials.

• Bolt is 4.2x faster on VGG models, 1.5x on ResNet, and 2.6x on 
RepVGG. On average, it improves inference speed by 2.8x.

• Bolt finishes tuning withing 20 minutes, against 12 hours average on 
Ansor.



System-friendly models: RepVGG case study

Changing activation functions:

• Augment RepVGG by trying different activation 
functions.

• Results show that activation functions can 
indeed impact accuracy.

• Inference speed stays more or less unaffected.

Deepening the model:

• It can improve accuracy with minimal speed 
lost.

• Accuracy increases by up to 0.82% and the 
average speed drop is 15.3%.

Combined effect: results show that designing models 
in a system-friendly way can improve accuracy more 
efficiently.

•



Pros

• Bolt is pioneer in bridging the gap between auto-tuners and device 
library information.

• Unlike existing operator fusion approaches that only fuses one 
GEMM/Conv and its adjacent operators (e.g. BiasAdd, ReLU), 
persistent kernel fusion can fuse sequences of GEMMs and Convs.

• Achieves both significant inference speed ups over Ansor, while also 
decreasing the tuning time.

• Automates finding optimal parameters for templates using lightweight 
profiler.

• Introduces new best practices for model design for hardware efficiency.



Cons

• Focused only on NVIDIA GPUs/CUTLASS library, not demonstrated for 
other platforms.

• Persistent fusion benefits memory-bound operations; tradeoffs for 
compute-bound operations not quantified.

• Evaluated for inference only, training use cases not explored.

• No analysis of energy efficiency – important for mobile/embedded 
deployment.

• Overhead of kernel launch with persistent fusion not analyzed, only for 
padding.
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