
Bolt: Bridging the Gap Between Auto-
Tuners and Hardware-Native
Performance

Jiarong Xing, Leyuan Wang, Shang Zhang, Jack Chen, Ang Chen, Yibo Zhu

R244: Large Scale Data Processing and Optimization
Pedro Sousa

Background

• Auto-tuners transform a tensor program into an equivalent but
structurally different tensor for higher performance on a target hardware.

• Hardware-agnostic auto-tuners (e.g. Ansor) generate efficient tensor
programs by searching a large search space.

• For certain workloads, they perform worst than hardware-native vendor
tuned libraries (e.g. cuBLAS and cuDNN).

• E.g.: NVIDIA GPUs have special hardware architectures that Ansor
cannot leverage since it uses an opaque hardware model.

• However, hardware libraries are not perfect either since they have fixed
primitives and lack the customization of auto-tuners.

Solution

• Opportunity:

• Emerging trends of modularized, templated libraries (e.g. NVIDIA
CUTLASS).

• Templates are parameterized and can be initiated to fit different
hardware and workloads.

• Templated libraries consider device details and extract hardware
performance.

BOLT enables end-to-end optimizations that bridge the gap
between auto-tuners and hardware-native performance.

BOLT Key Differentiators

1. Leverages templated libraries
for joint graph, operator, and
model level optimizations.

2. Enables novel persistent kernel
fusion for deeper operator
fusion at graph level.

3. Automates templated code
generation via light-weight
profiler and direct code
generation.

4. System-friendly model design
principles (e.g. exploring
activations).

Graph-level: deeper operator fusion 1/3

• New optimizations introduced to the device libraries via template
customization.

• Persistent kernel fusion: computes multiple operators using only one
kernel, leading to deeper operator fusion.

• Benefits of fusing GEMMs or Convs into a single operator:

1. No memory traffic for storing and loading inter-layer activations.

2. No launch latency.

3. Larger optimization scope.

Graph-level: deeper operator fusion 2/3

• When 2 GEMM/Conv operations
are fused together, the main
computation loops run back-to-
back in a single fused kernel.

• The output activation of the first
GEMM/Conv stays in faster GPU
memory.

• Bolt automatically detects
opportunities to use persistent
kernels in the computational
graph and generates the CUDA
code by creating new templates in
CUDLASS.

Graph-level: deeper operator fusion 3/3

Threadblock residence:

• Used when the threadblock size remains the same
between operations.

• Each threadblock works independently on a tile of
the output matrix/activation.

Register-file (RF) residence fusion:

• Used when the next operator’s weights can fit
entirely within a threadblock’s warp tiles.

• Keeps the output activations from the previous op in
the register file without writing to shared memory.

Shared-memory resident fusion:

• Used when next GEMM/Conv needs data from
multiple warp tiles, writing the output activation tiles
from RF to shared memory.

Operator-level: automating templated code
generation 1/2

• Templates only support a subset of operators, struggling to provide
complete functionality for end-to-end models.

• Bolt uses Bring Your Own Compiler:

• Reuse existing compiler stacks (e.g. TVM) and focus only on the
optimization and generating code for the target device templates.

• Lightweight Profiler:

• Searches template parameters space efficiently using hardware
details.

• Generates samples covering possible threadblocks/warp sizes, data
types, etc.

Operator-level: automating templated code
generation 2/2

• Low-level tensor implementations by instantiating templates using best
parameters from profiler.

• Generates CUDA code following template conventions instead of
invoking blackbox functions.

• Extend templates to support new customized optimizations:

• Layout transforms: change compute layout without graph edits.

• Padding for alignment: pad unaligned tensors to use alignment 8,
enabling tensor core acceleration and reducing memory loading time.

Model-level: designing system-friendly models

• System-model codesign helps build models that run more efficiently.

• Three main principles identified by Blt:

1. Exploring different activation functions with epilogue fusion.

2. Deepening models with 1x1 Convs.

3. Aligning tensor shapes to use GPUs more efficiently.

Evaluating GEMM/Conv2D performance

Bolt achieves significantly higher performance when compared to Ansor,
motivated by its tuning strategy based on hardware-native templates.

Evaluating persistent kernel fusion performance

• Baseline is Bolt using only epilogue fusion that computes the two
GEMMs/Conv2D sequentially.

• Persistent kernel fusion accelerates the computations by 1.2x-1.5x for
back-to-back GEMMs and by 1.1x-2.0x for back-to-back Conv2Ds.

Evaluating padding performance and overhead

• When comparing the performance
of Bolt with and without padding,
we see that the speed can be
improved by 1.8x on average.

• However, the padding adds extra
overhead of 16% on average

Evaluating end-to-end optimization

• Baseline is Ansor with 900 x # of tasks for the tunning trials.

• Bolt is 4.2x faster on VGG models, 1.5x on ResNet, and 2.6x on
RepVGG. On average, it improves inference speed by 2.8x.

• Bolt finishes tuning withing 20 minutes, against 12 hours average on
Ansor.

System-friendly models: RepVGG case study

Changing activation functions:

• Augment RepVGG by trying different activation
functions.

• Results show that activation functions can
indeed impact accuracy.

• Inference speed stays more or less unaffected.

Deepening the model:

• It can improve accuracy with minimal speed
lost.

• Accuracy increases by up to 0.82% and the
average speed drop is 15.3%.

Combined effect: results show that designing models
in a system-friendly way can improve accuracy more
efficiently.

•

Pros

• Bolt is pioneer in bridging the gap between auto-tuners and device
library information.

• Unlike existing operator fusion approaches that only fuses one
GEMM/Conv and its adjacent operators (e.g. BiasAdd, ReLU),
persistent kernel fusion can fuse sequences of GEMMs and Convs.

• Achieves both significant inference speed ups over Ansor, while also
decreasing the tuning time.

• Automates finding optimal parameters for templates using lightweight
profiler.

• Introduces new best practices for model design for hardware efficiency.

Cons

• Focused only on NVIDIA GPUs/CUTLASS library, not demonstrated for
other platforms.

• Persistent fusion benefits memory-bound operations; tradeoffs for
compute-bound operations not quantified.

• Evaluated for inference only, training use cases not explored.

• No analysis of energy efficiency – important for mobile/embedded
deployment.

• Overhead of kernel launch with persistent fusion not analyzed, only for
padding.

	Bolt: Bridging the Gap Between Auto-Tuners and Hardware-Native Performance�
	Background
	Solution
	BOLT Key Differentiators
	Graph-level: deeper operator fusion 1/3
	Graph-level: deeper operator fusion 2/3
	Graph-level: deeper operator fusion 3/3
	Operator-level: automating templated code generation 1/2
	Operator-level: automating templated code generation 2/2
	Model-level: designing system-friendly models
	Evaluating GEMM/Conv2D performance
	Evaluating persistent kernel fusion performance
	Evaluating padding performance and overhead
	Evaluating end-to-end optimization
	System-friendly models: RepVGG case study�
	Pros
	Cons

