### A. Mirhoseini et al.: A Hierarchical Mode for Device Placement, 2018

Presented by: Balázs Tóth

#### Background

- Device placement important for deep learning models
  - Image classification
  - Speech recognition
  - Machine translation
- Can be framed as a graph partitioning problem
  - Scotch (Pellegrini, 2009), an open-source graph partitioner used as baseline

#### Prior work

- Neural networks and reinforcement learning for combinatorial optimization
  - Vinyals et al., (2015); Bello et al., (2016)
- Reinforcement learning to optimize system performance.
  - Mao et al. (2016) train a resource management algorithm with policy gradients
- First paper by Mirhoseini et al., (2017)
  - Uses a RNN policy network to predict operation placements
  - Only works for small (<1000 nodes) computation graphs
  - Requires manual human-expert co-locations

# A. Mirhoseini et al.: Device Placement Optimization with Reinforcement Learning, 2017

- RL based placement model
- Generates placement
- Executes it on hardware
- Updates policy based on running time based reward



## A. Mirhoseini et al.: Device Placement Optimization with Reinforcement Learning, 2017

- Sequence-to-sequence model with LSTM and a content-based attention mechanism to predict the placements
- Operations embedded, then at each time step a device is predicted
- Requires prior co-location



#### New architecture

- Run feed forward Grouper before the sequential Placer.



#### **Reward maximisation**

- Goal is to maximise

$$J(\theta_g, \theta_d) = \mathbf{E}_{\mathbf{P}(\mathbf{d}; \theta_{\mathbf{g}}, \theta_{\mathbf{d}})}[R_d] = \sum_{g \sim \pi_g} \sum_{d \sim \pi_d} p(g; \theta_g) p(d|g; \theta_d) R_d$$

- Use policy gradients achieved by drawing placement samples
  - m=l Grouper samples
  - k=4 Placer samples
- Use Adam (Kingma & Ba, 2015) optimizer
- Use distributed training



#### Results

| Tasks         | CPU   | GPU  | #GPUs | Human  | Scotch | MinCut | Hierarchical | Runtime   |
|---------------|-------|------|-------|--------|--------|--------|--------------|-----------|
|               | Only  | Only |       | Expert |        |        | Planner      | Reduction |
| Inception-V3  | 0.61  | 0.15 | 2     | 0.15   | 0.93   | 0.82   | 0.13         | 16.3%     |
| ResNet        | -     | 1.18 | 2     | 1.18   | 6.27   | 2.92   | 1.18         | 0%        |
| RNNLM         | 6.89  | 1.57 | 2     | 1.57   | 5.62   | 5.21   | 1.57         | 0%        |
| NMT (2-layer) | 6.46  | OOM  | 2     | 2.13   | 3.21   | 5.34   | 0.84         | 60.6%     |
| NMT (4-layer) | 10.68 | OOM  | 4     | 3.64   | 11.18  | 11.63  | 1.69         | 53.7%     |
| NMT (8-layer) | 11.52 | OOM  | 8     | 3.88   | 17.85  | 19.01  | 4.07         | -4.9%     |

Model runtimes for different placements

#### Results



Hierarchical Planner's placement of a NMT (4-layer) model

#### Results



Policy training results with 1 and 4 workers

#### Opinion

- The placement takes significant time
  - Newer approaches run considerably quicker producing comparable or better results
  - However, received a lot of citations and seems to have been novel in the field
- Evaluation felt lacking
  - Only tested on 1 architecture, using 1 CPU and 2/4/8 GPU
  - The optimal placement on a few of the models is the trivial GPU-only one
  - Missing comparison against their own previous paper?
- Decisions made not explained well
  - Arbitrary hyperparameters used
  - Embedding seems somewhat weird

#### References

- F. Pellegrini: Distillating knowledge about Scotch, 2009
- O. Vinyals et al.: Pointer networks, 2015
- I. Bello et al.: Neural combinatorial optimization with reinforcement learning, 2016
- H. Mao et al.: Resource Management with Deep Reinforcement Learning, 2016
- A. Mirhoseini et al.: Device Placement Optimization with Reinforcement Learning, 2017

### Discussion