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Background

- Device placement important for deep learning models
- Image classification
- Speech recognition
- Machine translation
- Can be framed as a graph partitioning problem
- Scotch (Pellegrini, 2009), an open-source graph partitioner used as baseline



Prior work

- Neural networks and reinforcement learning for combinatorial optimization
- Vinyals etal, 2015); Bello et al., 2016)

- Reinforcement learning to optimize system performance.
- Maoetal 2016)train a resource management algorithm with policy gradients

- First paper by Mirhoseiniet al., (2017)
- Uses a RNN policy network to predict operation placements

- Only works for small (<1000 nodes)computation graphs
- Requires manual human-expert co-locations
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Sequence-to-sequence model with LSTM and a content-based attention
mechanism to predict the placements
Softmax

Operations embedded, then at each time step a device 1s predicted
Requires prior co-location

Attention

Device
for opl

Device
for op2

Device
\
\
\

for op100
Hidden

state

Embedding

output output
type shapes I type




New architecture

Run feed forward Grouper before the sequential Placer.
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Reward maximisation

Goalis to maximmise

J(69,0a) = Ep(aso,.00)[Ral = D> _ > plg;0)p(d|g; 6a) Ra

grmg demy
Use policy gradients achieved by drawing placement samples
m=1 Grouper samples

k=4 Placer samples

Parameter Server

Use Adam (Kingma & Ba, 2015) optimizer %\

Use distributed training

Controller 1 Controller 2 S Controller K

g g




Results

Tasks CPU GPU | #GPUs Human Scotch MinCut Hierarchical | Runtime
Only  Only Expert Planner Reduction
Inception-V3 0.61 0.15 2 0.15 0.93 0.82 0.13 16.3%
ResNet - 1.18 2 1.18 6.27 2.92 1.18 0%
RNNLM 6.89 1.57 2 1.57 5.62 5.21 1.57 0%
NMT (2-layer) | 6.46 OOM 2 2.13 3.21 5.34 0.84 60.6%
NMT (4-layer) | 10.68 OOM 4 3.64 11.18 11.63 1.69 53.7%
NMT (8-layer) | 11.52 OOM 8 3.88 17.85 19.01 4.07 -4.9%

Model runtimes for different placements



Results
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Results
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Opinion

- The placement takes significant time
- Newerapproaches run considerably quicker producing comparable or better results
-  However, received a lot of citations and seems to have been novel in the field
- Evaluation felt lacking
- Only tested on larchitecture, using 1 CPU and 2/4/8 GPU
- The optimal placement on a few ofthe models is the trivial GPU-only one
- Missing comparison against their own previous paper?
- Decisions made not explained well

- Arbitrary hyperparameters used
-  Embedding seems somewhat weird
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Discussion
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