

Neural Architecture Search as Program Transformation Exploration

Jack Turner, Elliot J. Crowley, Michael F.P. O'Boyle

Presented by Thomas Yuan

Background

Goal: Improve performance of DNNs

Two main, distinct approaches

- Program Transformation (Compilers)
 - Hardware specific optimizations
- Neural Architecture Search
 - Replace components with computationally cheaper methods

Problems

- Inaccurate choice of program transformations for a powerful architecture
- NAS limited to pre-designed list of convolutional alternatives

Overview

Combine both approaches!

Example:

- Program transformation: Loop interleaving
- NAS technique: bottlenecking

Overview

Concerns:

Legality

- NAS methods change architecture
 - do not guarantee transformation safety
- Need a way to measure new "transformation safety"
 - Fisher Potential

Polyhedral Model

- Describes program transformations
- Domain
 - Collection of statement instances
- Set of accesses
 - Mapping of iteration space to memory
- Schedule
 - Assigns timestamps
- Legality of transformation
 - If data dependence -> relative ordering must be preserved

Example

Algorithm 1 Naive implementation of 1×1 tensor convolution.

```
for (co=0; co<Co; co++)
1
    for (oh=0; oh<OH; oh++)
2
       for (ow=0; w<OW; ow++)
3
   S1 0[c_0][h][w] = 0.;
4
   for (ci=0; ci<Ci; ci++)</pre>
5
   S2 0[co][oh][ow] +=
6
            W[co][1][1] *
7
            I[ci][oh][ow];
8
```

We can also describe the schedule as follows:

 $T_{S1}(c_o, h, w) = (c_o, h, w)$ $T_{S2}(c_o, h, w, c_i) = (c_o, h, w, c_i)$

Loop Interchange: $T_{S1}(c_o, h, w) = (c_o, w, h)$

Legality: $\forall i, j, S1, S2, D \quad i \rightarrow j \in d_{S1,S2} \rightarrow T(i) \leq T(j)$

Bottlenecking:

- Reduce number of filters from C_O to C_O/B

 $T_{\mathbb{S}}(c_o,J') = (c'_o,J') \mid c'_o < C_o/B$

Grouping

- Split C_I input channels into G groups
- Each group independently convolved
- C_O/G output channels -> concatenated

 $T_{\mathbf{S}}(c_o, c_i, J^{\prime\prime}) = (g, c_o/G, c_i/G, J^{\prime})$

Depthwise Convolution

- Special case of grouping when C_O = C_I = G

Optimization	Description
Program Transformations	
reorder	Interchange nested loops
tile	Cache and register blocking
unroll	Loop unrolling
prefetch	Memory coalescing between threads
split	Divide iteration into multiple axes
fuse	Combine two axes into one
Neural Architecture Transformations	
bottleneck	Reduce domain by factor <i>B</i>
group	Slice and offset two loops by factor G
Mapping to GPU	
blockIdx	Block-wise parallelism
threadIdx	Threads within blocks
vthread	Striding thread access

Fisher Potential

- Total information that each loop nest (layer) contains about class labels under a simplifying assumption of conditional independence.
- Or, how much each layer would affect the loss if deleted

Search over 1000 configurations

Check which candidates satisfy Fisher Potential test and select best performing one

Compared to TVM & NAS (applying NAS then using TVM to compile)

3 Sequence of Operations Stood Out

- 1. [split \rightarrow interchange \rightarrow group \rightarrow interchange \rightarrow fuse]
 - a. Group kernels over spatial domain
- 2. [unroll \rightarrow group \rightarrow interchange]
 - a. Output channels unrolled by factor 16, then grouped by G = 2
- 3. [split \rightarrow group \rightarrow interchange \rightarrow group]
 - a. Splitting up iteration domain by applying different levels of grouping

Figure 6: Exploring different sequences of transformations for an individual layer of ResNet-34 on the Intel Core i7 CPU. NAS is the result of applying grouping with factor 2 first, then compiling with TVM. The other three sequences are interleaved transformations produced by our method.

Critiques and Concerns

Experiments: Compare best performance? Average performance?

Scalability and deployability

- Retraining models when deployed
- Distributed training?

Skeptical about Fisher Potential

- Could have benefited from more data

Search process too naive

Usefulness of bottlenecking

Limited NAS techniques that can be applied in program transformation

Questions?

