7. UNIVERSITY OF

A DR

4% CAMBRIDGE

Neural Architecture Search as
Program Transformation
Exploration

Jack Turner, Elliot J. Crowley, Michael F.P. O’'Boyle

Presented by Thomas Yuan



Background

Goal: Improve performance of DNNs

Two main, distinct approaches

- Program Transformation (Compilers)
- Hardware specific optimizations

- Neural Architecture Search

- Replace components with computationally cheaper methods

Problems

- Inaccurate choice of program transformations for a powerful
architecture

- NAS limited to pre-designed list of convolutional alternatives
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Overview

Combine both approaches!

Example:

- Program transformation: Loop interleaving
- NAS technique: bottlenecking

for co in [0,C0-1]: for co in [0,C0/B-1]:
for ci in [@8,CI=1}: for ci in [0,CI=1]:
for i in [0,CI-1]: for i in [0,CI/B-1]:
for co in [0,C0/B-1]: for co in [0,CO/B-1]:
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Overview

Concerns:

Legality

- NAS methods change architecture
- do not guarantee transformation safety

- Need a way to measure new “transformation safety”
- Fisher Potential
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Models and Implementation

Polyhedral Model

- Describes program transformations
- Domain
- Collection of statement instances
- Set of accesses
- Mapping of iteration space to memory
- Schedule
- Assigns timestamps
- Leqality of transformation
- If data dependence -> relative ordering must be preserved
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Algorithm 1 Naive implementation of 1 X 1 tensor convolution.

for (co=0; co<Co; cot++)
for (oh=0; oh<OH; oh++)
for (ow=0; w<OW; ow++)
S1 OLc_ol[h]l[w]l = 0.;
for (ci=0; ci<Ci; cit++)
S2 OLcolloh][ow] +=
Wlcol[11[1] *
I[cilloh][ow];
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We can also describe the schedule as follows:

Ts1(co, h,w) = (co, h, W)
Ts2(co, h, w, ci) = (co, h, w, c;)

Loop Interchange: Tsi(co, h, w) = (co, w, )

Legality: Vi,j,51,52,D i— j€dsyso — T(i) X T(j)
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Models and Implementation

Bottlenecking:

- Reduce number of filters from C_O to C_O/B
Ts(co,J") = (g, J") | ¢4 < Co/B
Grouping

- Split C_I input channels into G groups
- Each group independently convolved
- C_O/G output channels -> concatenated

Ts(co,cisJ"") = (9,¢0/G, ci/G, ')
Depthwise Convolution

- Special case of groupingwhen C O=C I1=G
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Models and Implementation

Optimization Description
Program Transformations
reorder Interchange nested loops
tile Cache and register blocking
unroll Loop unrolling
prefetch Memory coalescing between threads
split Divide iteration into multiple axes
fuse Combine two axes into one
Neural Architecture Transformations
bottleneck Reduce domain by factor B
group Slice and offset two loops by factor G
Mapping to GPU
blockIdx Block-wise parallelism
threadIdx Threads within blocks
vthread Striding thread access

7@z UNIVERSITY OF

> CAMBRIDGE



Models and Implementation

Fisher Potential

- Total information that each loop nest (layer) contains about class
labels under a simplifying assumption of conditional independence.
- Or, how much each layer would affect the loss if deleted

60 1

50 1

H
o

w
o
L

1 N W H i
Aczﬁz _ZZAnijgnij .

n % 3

CIFAR-10 Top-1 Error %

N
o
L

g.“ 3 o e ©°0

~o“...o ®e o0

fury
o
L

o

0.&)0 0‘2)2 0.2)4 0‘b6 0.08 0.10
Fisher Potential

: UNIVERSITY OF




Models and Implementation

Search over 1000 configurations

Check which candidates satisfy Fisher Potential test and select best
performing one

Compared to TVM & NAS (applying NAS then using TVM to compile)
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3 Sequence of Operations Stood Out

1. [split — interchange — group — interchange — fuse]
a. Group kernels over spatial domain

2. [unroll — group — interchange]
a. Output channels unrolled by factor 16, then grouped by G = 2

3. [split —» group — interchange — group]
a. Splitting up iteration domain by applying different levels of

grouping
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Figure 6: Exploring different sequences of transformations for an individual layer of ResNet-34 on the Intel Core i7 CPU. NAS
is the result of applying grouping with factor 2 first, then compiling with TVM. The other three sequences are interleaved
transformations produced by our method.
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Critiques and Concerns

Experiments: Compare best performance? Average performance?
Scalability and deployability

- Retraining models when deployed
- Distributed training?

Skeptical about Fisher Potential

- Could have benefited from more data
Search process too naive
Usefulness of bottlenecking

Limited NAS techniques that can be applied in program transformation
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Questions?
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