
Neural Architecture Search as 
Program Transformation
Exploration
Jack Turner, Elliot J. Crowley, Michael F.P. O’Boyle

Presented by Thomas Yuan



Background

Goal: Improve performance of DNNs 

Two main, distinct approaches
- Program Transformation (Compilers)

- Hardware specific optimizations
- Neural Architecture Search

- Replace components with computationally cheaper methods

Problems
- Inaccurate choice of program transformations for a powerful 

architecture
- NAS limited to pre-designed list of convolutional alternatives



Overview

Combine both approaches!

Example:

- Program transformation: Loop interleaving 
- NAS technique: bottlenecking



Overview

Concerns:

Legality

- NAS methods change architecture
- do not guarantee transformation safety

- Need a way to measure new “transformation safety”
- Fisher Potential



Models and Implementation

Polyhedral Model

- Describes program transformations
- Domain

- Collection of statement instances
- Set of accesses

- Mapping of iteration space to memory
- Schedule

- Assigns timestamps
- Legality of transformation

- If data dependence -> relative ordering must be preserved



Example

Loop Interchange: 

Legality:



Models and Implementation

Bottlenecking:

- Reduce number of filters from C_O to C_O/B

Grouping

- Split C_I input channels into G groups
- Each group independently convolved 
- C_O/G output channels -> concatenated

Depthwise Convolution

- Special case of grouping when C_O = C_I = G



Models and Implementation



Models and Implementation

Fisher Potential

- Total information that each loop nest (layer) contains about class 
labels under a simplifying assumption of conditional independence.

- Or, how much each layer would affect the loss if deleted



Models and Implementation

Search over 1000 configurations

Check which candidates satisfy Fisher Potential test and select best 
performing one

Compared to TVM & NAS (applying NAS then using TVM to compile)



Results



Results



Results

3 Sequence of Operations Stood Out

1. [split → interchange → group → interchange → fuse]
a. Group kernels over spatial domain

2. [unroll → group → interchange]
a. Output channels unrolled by factor 16, then grouped by G = 2

3. [split → group → interchange → group]
a. Splitting up iteration domain by applying different levels of 

grouping



Results



Results



Critiques and Concerns

Experiments: Compare best performance? Average performance?

Scalability and deployability

- Retraining models when deployed
- Distributed training?

Skeptical about Fisher Potential

- Could have benefited from more data

Search process too naive

Usefulness of bottlenecking

Limited NAS techniques that can be applied in program transformation



Questions?


