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Abstract and Introduction

*The paper introduces EINNET (Efficient Inference Network), a derivation-based
optimizer for tensor programs, which are at the core of DNN computations.

*Traditional optimization techniques have limitations because they rely on a
fixed set of predefined tensor operators, leading to restricted optimization
possibilities.

*EINNET expands this by using general tensor algebra expressions, enabling a
much larger optimization space and automatically creating new operators
required by transformations



Background and Motivation

*The current tensor program optimization works at two levels: operator and
graph. Operator-level optimization focuses on performance tuning for specific
tensor operators, while graph-level optimization reorganizes DNN
computations for efficiency.

*However, both approaches are constrained to predefined operator
representable (POR) transformations, which EINNET aims to transcend by
exploring general tensor algebra transformations



Key Contributions

*EINNET is distinguished by revealing operator computation semantics and
applying derivation rules to tensor algebra expressions, allowing for the
reorganization of computation into arbitrary tensor expressions.

*This system can potentially introduce novel program transformations and
optimize beyond the capabilities of existing frameworks




Addressing Optimization Challenges

 EINNET tackles three main challenges: discovering transformations
between general expressions, converting expressions back to
executable kernels (expression instantiation), and efficiently finding
optimizing transformations in the vast space of general tensor algebra

transformations
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Figure 5: The derivation process of the example in Figure 3(b), which transforms Conv with Matmul and eOperators




Methodology

*The paper details the derivation rules EINNET employs to transform
tensor programs into optimized forms

*These rules encompass intra-expression derivation

*The approach combines traversal and summation notations, along with
scope-based transformations to optimize computation



Optimization

EINNET optimizes tensor programs: i.e.) transforming
convolution operations into matrix multiplications and fusing
multiple operators into a single one for efficiency
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Figure 4: A tensor algebra expression example for two matrix
multiplications A x B x C. The red box highlights a scope that
instantiates the intermediate result of A x B.



Implementation and Evaluation

 EINNET has been implemented with over 23,000 lines of code
in C++ and Python and has shown significant performance
improvements over existing optimizers, with speedups of up
to 2.72x on certain hardware



Overview of
EINNET

®The optimizer = an input tensor
program into subprograms, translates
these into tensor algebra expressions,
applies derivation rules, and generates
optimized subprograms.
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Figure 2: EINNET overview




Conclusion and Final Thoughts

Innovation in Optimization: EINNET represents a significant advancement in tensor
program optimization, pushing beyond the constraints of predefined operator
representable (POR) transformations by leveraging general tensor algebra
expressions.

Methodological Breakthrough: Introduces a derivation-based mechanism that
transforms tensor programs into optimized forms, utilizing a set of sophisticated
derivation rules that ensure functional equivalence while enhancing performance.

Performance Enhancement: Demonstrated substantial performance improvements
over existing optimization frameworks, achieving up to 2.72x speedup

Practical Impact: EINNET's capabilities can be applied to a variety of real-world
applications that utilize DNNs, potentially leading to efficiency gains in critical areas
such as autonomous driving, speech recognition, etc.

Future Directions:
¢ Expand Optimization Techniques
¢ Broader Hardware Compatibility

® Integration with Existing Frameworks
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