TASO: Optimizing Deep Learning Computation with Automatic Generation of Graph Substitutions

Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski, Matei Zaharia, Alex Aiken

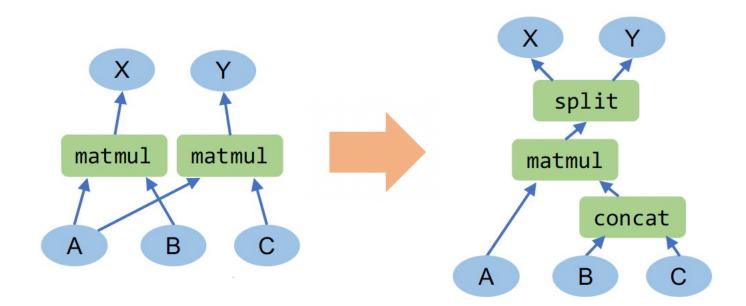
Presented By

Pranav Talluri

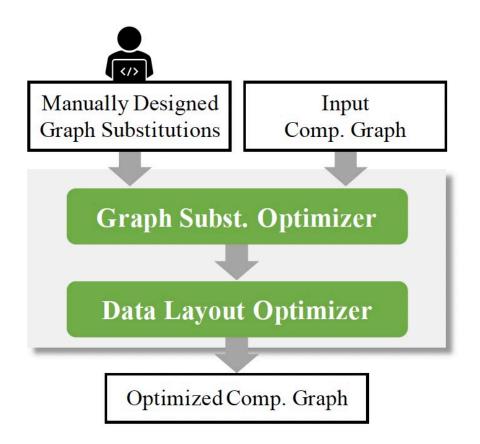
Background

- DNNs are expressed as computation graphs
- Multiple formulations can achieve the same goal, with differing costs
- Introduces the desire to optimise DNN computation graphs
- Before TASO, the specific optimisations were manually designed by human experts
- TASO automates the generation of graph substitutions in order to programmatically optimise DNN graphs

Background



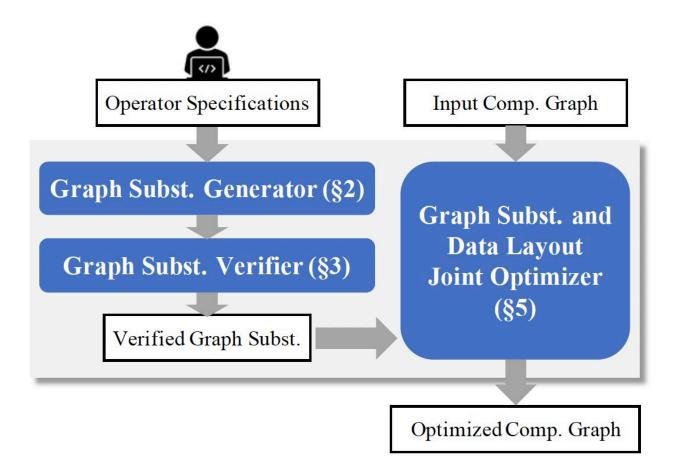
Background



Overview

- TASO automates generation of graph substitutions
- Framework agnostic (cuDNN + TVM)
- Takes operator specifications as an input
- Does so in a few stages:
 - Programmatically generate candidate graph substitutions
 - Generate
 - Quick test to prune impossible substitutions
 - Formally verify validity
 - Cost-based backtracking search to find an optimised graph
 - Includes co-optimisation of data locality

Overview



Approach: Generate Substitutions

- Substitution = source, target, mapping
- Configuration parameter dependent operators
- Generation algorithm
 - Enumerate potential graphs
 - Create graphs iteratively
 - Collect fingerprints
 - Test graphs with identical fingerprints
- Special Cases

Algorithm 1 Graph substitution generation algorithm.
1: Input: A set of operators \mathcal{P} , and a set of input tensors \mathcal{I} .
2: Output: Candidate graph substitutions S .
3:
4: // Step 1: enumerating potential graphs.
<i>5:</i> $\mathcal{D} = \{\} // \mathcal{D} \text{ is a graph hash table indexed by their fingerprints.}$
6: $\text{BUILD}(1, \emptyset, \mathcal{I})$
7: function $\operatorname{Bulld}(n, \mathcal{G}, \mathcal{I})$
8: if \mathcal{G} contains duplicated computation then
9: return
10: $\mathcal{D} = \mathcal{D} + (\operatorname{FingerPrint}(\mathcal{G}), \mathcal{G})$
11: if $n < threshold$ then
12: for $op \in \mathcal{P}$ do
13: for $i \in \mathcal{I}$ and i is a valid input to <i>op</i> do
14: Add operator op into graph G .
15: Add the output tensors of op into \mathcal{I} .
16: $\operatorname{BUILD}(n+1, \mathcal{G}, \mathcal{I})$
17: Remove operator op from \mathcal{G} .
18: Remove the output tensors of op from \mathcal{I} .
19:
20: // Step 2: testing graphs with identical fingerprint.
$21: \mathcal{S} = \{\}$
22: for $\mathcal{G}_1, \mathcal{G}_2 \in \mathcal{D}$ with the same FINGERPRINT (\cdot) do
23: if \mathcal{G}_1 and \mathcal{G}_2 are equivalent for all test cases then
24: $S = S + (\mathcal{G}_1, \mathcal{G}_2)$

25: **return** *S*

Approach: Formal Verification

- Verify generated substitutions
- Operator properties expressed in FOL
 - Manually written and reviewed
 - Further validated using symbolic execution
 - Properties are added when required
 - Checked for consistency and redundancies are removed
- Uses Z3 (SMT Solver)
- Shapes of tensors are not modelled
- Data layout not included

Approach: Formal Verification

Name	Description	Parameters	
Tensor Operators			
ewadd	Element-wise addition		
ewmul	Element-wise multiplication		
smul	Scalar multiplication		
transpose	Transpose		
matmul	Batch matrix multiplication [#]		
conv	Grouped convolution [%]	stride, padding, activation	
enlarge	Pad conv. kernel with zeros †	kernel size	
relu	Relu operator		
pool _{avg}	Average pooling	kernel size, stride, padding	
pool _{max}	Max pooling	kernel size, stride, padding	
concat	Concatenation of two tensors	concatenation axis	
${\sf split}_{\{0,1\}}$	Split into two tensors	split axis	
Constant Tensors			
C _{pool}	Average pooling constant	kernel size	
I _{conv}	Convolution id. kernel	kernel size	
I _{matmul}	Matrix multiplication id.		
I _{ewmul}	Tensor with 1 entries		

Approach: Formal Verification

Operator Property	Comment
$\forall x, y, z. \text{ ewadd}(x, \text{ewadd}(y, z)) = \text{ewadd}(\text{ewadd}(x, y), z)$	ewadd is associative
$\forall x, y. \text{ ewadd}(x, y) = \text{ewadd}(y, x)$	ewadd is commutative
$\forall x, y, z. \text{ ewmul}(x, \text{ewmul}(y, z)) = \text{ewmul}(\text{ewmul}(x, y), z)$	ewmul is associative
$\forall x, y. \text{ ewmul}(x, y) = \text{ewmul}(y, x)$	ewmul is commutative
$\forall x, y, z. \text{ ewmul}(\text{ewadd}(x, y), z) = \text{ewadd}(\text{ewmul}(x, z), \text{ewmul}(y, z))$	distributivity
$\forall x, y, w. \operatorname{smul}(\operatorname{smul}(x, y), w) = \operatorname{smul}(x, \operatorname{smul}(y, w))$	smul is associative
$\forall x, y, w. \text{ smul}(\text{ewadd}(x, y), w) = \text{ewadd}(\text{smul}(x, w), \text{smul}(y, w))$	distributivity
$\forall x, y, w. \operatorname{smul}(\operatorname{ewmul}(x, y), w) = \operatorname{ewmul}(x, \operatorname{smul}(y, w))$	operator commutativity
$\forall x. transpose(transpose(x)) = x$	transpose is its own inverse
$\forall x, y. transpose(ewadd(x, y)) = ewadd(transpose(x), transpose(y))$	operator commutativity
$\forall x, y. transpose(ewmul(x, y)) = ewmul(transpose(x), transpose(y))$	operator commutativity
$\forall x, w. smul(transpose(x), w) = transpose(smul(x, w))$	operator commutativity
$\forall x, y, z. matmul(x, matmul(y, z)) = matmul(matmul(x, y), z)$	matmul is associative
$\forall x, y, w. \operatorname{smul}(\operatorname{matmul}(x, y), w) = \operatorname{matmul}(x, \operatorname{smul}(y, w))$	matmul is linear
$\forall \mathbf{r} \ u \ z \ matmul(\mathbf{r} \ ewadd(u \ z)) = ewadd(matmul(\mathbf{r} \ u) \ matmul(\mathbf{r} \ z))$	matmul is linear

•••

Approach: Pruning Redundant Substitutions

- Redundant substitutions are subsumed by more general, valid substitutions
- Input tensor renaming
- Common subgraph



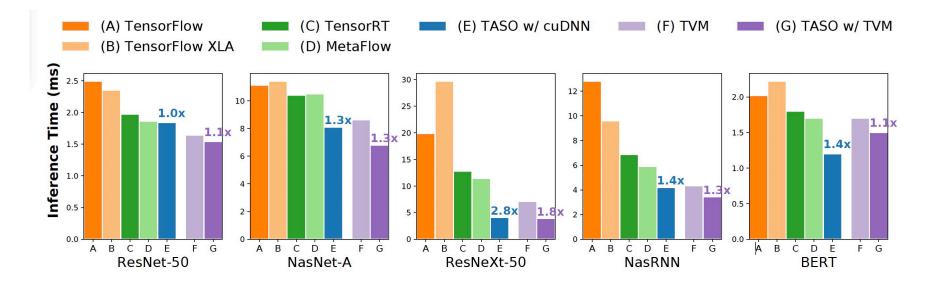
Approach: Joint Optimisation

- Utilises MetaFlow cost-based backtracking search algorithm
- Considers data layout optimisation opportunities
- Joint optimisation uncovers otherwise impossible optimisations
- Costs are given by execution times of specific operators
- Cycle removal
- Alpha parameter prunes search space

Algorithm 2 Cost-Based Backtracking Search
1: Input : an input graph \mathcal{G}_{in} , verified substitutions \mathcal{S} , a cost model <i>Cost</i> (·), and a hyper parameter α .
2: Output: an optimized graph.
3:
4: $\mathcal{P} = \{\mathcal{G}_{in}\} // \mathcal{P}$ is a priority queue sorted by Cost.
5: while $\mathcal{P} \neq \{\}$ do
6: $\mathcal{G} = \mathcal{P}$.dequeue()
7: for substitution $s \in S$ do
8: // LAYOUT(\mathcal{G} , s) returns possible layouts applying s on \mathcal{G} .
9: for layout $l \in LAYOUT(\mathcal{G}, s)$ do
10: // APPLY(G , s, l) applies s on G with layout l.
11: $G' = APPLY(G, s, l)$
12: if \mathcal{G}' is valid then
13: if $Cost(\mathcal{G}') < Cost(\mathcal{G}_{opt})$ then
14: $\mathcal{G}_{opt} = \mathcal{G}'$
15: if $Cost(\mathcal{G}') < \alpha \times Cost(\mathcal{G}_{opt})$ then
16: $\mathcal{P}.enqueue(\mathcal{G}')$
17: return \mathcal{G}_{opt}

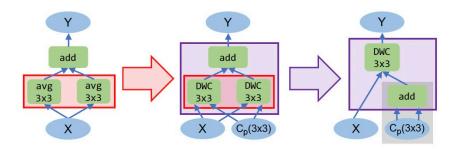
Evaluation: Optimisation

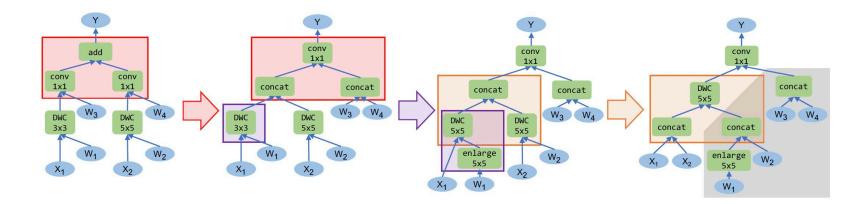
- Setup tested on 5 DNNs
- Successful automatic optimisation inference time reduction
 - cuDNN: 1.3x to 2.8x
 - TVM: 1.1x to 1.8x



Evaluation: Substitutions

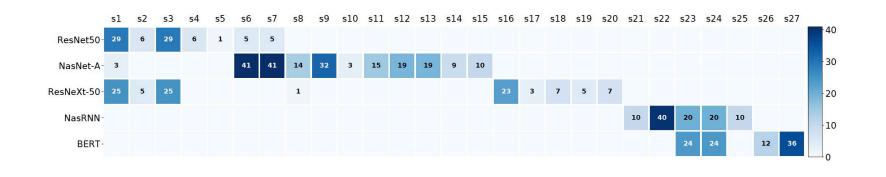
- NasNet was produced using neural architecture search
- Unconventional optimisations were discovered

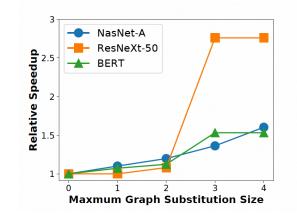




Evaluation: Substitutions

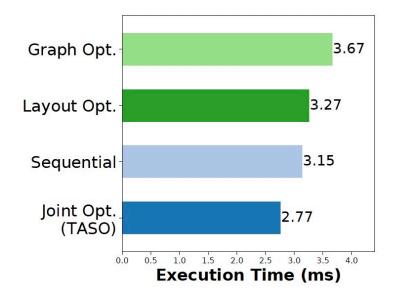
- Different DNNs used different optimisations, showing usefulness of TASO
- Scalability
 - Larger operator substitutions could be useful





Evaluation: Substitutions

- Joint optimisation
 - Better than individual or sequential
 - $(A \times B) \rightarrow ((B^T \times A^T)^T)$ with B^T in row-major and A^T in column-major
 - Phase ordering?
- Relatively quick <10 minutes for each DNN



Review

Positives

- Novel idea
- Successful execution
 - Improves DNN performance
 - Reduces human effort
 - Extensible framework
- Seminal work in an exciting research area
 - Graph transformation backend still in use

Negatives

- Reliant on user provided operator properties
- Scalability of generator
- Phase ordering problem + search procedure
- Cost model has issues

Future Works

- Future works have built on this approach
- PET
 - Partially equivalent optimisations
- TENSAT
 - Equality saturation
- X-RLflow
 - RL approach to searching optimisation space
- REGAL
 - Transfer knowledge