Transferable Graph Zhou etal.
Optimisers for ML
Compilers

What’s the problem?

Lots of data, lots of
compute power, big
graphs of computation

1. Device placement
2. Operation Scheduling
3. Operation Fusion

Cloud computation, Accelarators ie.
Hardware GPUs, TPUs (Distributed, and different
architectures have different strengths)

What was previous work, why was it insufficient?

» Device-specific optimisation by compilers (TensorFlow, XLA, Glow, MLIR) — need to have
seen device before O 9 ¢+ & m)

» Heuristic methods on each individual problem ie. Auto-tuning etc.

» Other Reinforcement Learning methods:
* expensive to train,

» focused on one problem with no knowledge sharing

Learning solutions need resource efficiency, speed,
AND
To tackle optimisations that affect each other!

A Reinforcement Learning Approach

» GraphSAGE to capture
topological information In
the compuatational graph

» Scalable attention network
to capture long-ranged
dependencies

« Feature modulation to allow
specialisation on graph type
without increasing
parameter numbers

Adacenc ! __ Input Feature
; " E:tl’lx Y : :'f GraphSAGE ‘.: Conditioning NxA
. Nx128
Sparse :
: T -
[Representatlon Node Feature: . 2
Ops Type ; g Segmented S
O Output Shape = —{ 8 5 Transformer [®e® —— ?_‘
Input Ops : 28 o
= \ / S
..___.___._______._I T &
Concatenated g ; B ettty -
. Nodes ~Aggregator 1 . NS .
i Features —+Aggregator 2 o P Q00 QQOO ;
_____________________ .E i N ' _ Y :
L3 i @ ' : Action
E ‘3 1 "=:.-:_._?'_-:._,__._. N [I
_______________________ (5] 2 : S ! probabilities

Figure 3: Overview of GO: An end-to-end graph policy network that combines graph embedding and
sequential attention. /N: Number of Nodes, a: Size of the action space (number of devices, number
of priority levels, etc.). Node features are sorted in topological order.

Multiple Dependent Optimisation Tasks

Recurrent
attention layers
for each task
Parameters
shared across
tasks.

]

|

Segmented Segmented :

Transformer Transformer 1

Layer :

I

I

I

Graph policy network : !
]

LN Nxd |

', Fusion priorities Placement decision Scheduling priorities)’

b -~
Task heads

Multi-task policy network that extends GO's policy network with additional recurrent attention
layers for each task and residual connections. GE: Graph Embedding, FC: Fully-Connected
Layer, Nxf: fusion action dimension, Fxd: placement action dimension, Nxs: scheduling action
dimension.

Evaluation

* Findings
 Methods , e p——

. GO-one HP METIS HDP
Model (Fdevices) u u
(=) (=)) =) overHp/ WDP ovee HIpP

. . - . 2 layer RNNLM (2) 0.173 0.192 0.355 0.191 9.9% / 9.4% 295
PrOX| mal PO||Cy Op't| misation layer RNNLM (4) 0.210 0.239 0.503 0.251 13.8%/ 16.3% 1. 76%
$-layer RNNLM (¥) 0.320 0.332 0OM 0.764 3.8% / 58.1% 278

Flayer GRMT (2) 301 0351 034 0337 TT6% 1 143% 3%
) L . Hlayer GNMT (4) 0.350 0.469 0.466 0432 34% | 23.4% 58.8x
& Layer GNMT (8) 0.440 0.562 0OM 0.693 21.7% J 36.5% 7.35%

Large negative reward for bad optimisation o o e
4-layer Transformer- X1 (4) 0.230 027 CHIM 0.2549 17.4% 1 12.6% 26.7x
B-layer Transformer-X1. (8) 0,350 (L6 CHOM 0435 239% 0 16, 7% 16.7x
. . Tnception (2) B32 0229 0312 OOM 0301 36,65 1 23.9% T35x
6 different architectures cepion 2 b64 o5 | omi | oom | oam | simimow | nm
AmochuNet (4) 0.394 D 0426 0418 26.1% 1 6.1% 58.8n
T-stack T8-layer WaveNet (2) 0317 0376 OOM 0354 T8.6% 1 11.7% .67

4-stack 36-layer WaveNet (4) 0.659 0988 0OM 0721 50% / 9.4% 20

4 baseline comparisons GROMFAN L

Table 2: Run time comparison between GO-one, human expert, TensorFlow METIS, and hierarchical
device placement (HDP) on six graphs (RNNLM, GNMT, Transformer-XL, Inception, AmoebaNet,

U p 1(0) 80000 nodes (8_|ayers) and WaveNet). Search speed up is the policy network training time speed up compared to HDP

(reported values are averages of six runs).

Speedup TV default 5A O-ome Speedup T default 5A Gi-one

NMT {2GPU) 282 3 319 {+0.37) RNNLM (8GPU) -1.39 -238 -LIT (40.11)
NMT (2P -0L.59 534 1203 (+12.92) TRE-XL 2GPU) 2427 25.1 28,51 (+4.24)
NMT (8GPI) 10,47 10,47 1265 (+2.18) TRE-XL. (4GPL) 17.05 1932 1999 (+2.9d4)
RNNLM {4GPL) 1.4 1.0 LZ3 {+0.1%) TRE-XL (8GPU)} 21.66 26.25 3148 (+9.5I)

Table 3; Speedup of each fusion policy normalized to the no-fusion case (reported in %), The number
in the parentheses is the improvement of our work over the default fusion,

Generalises across different graphs and tasks — move varied set

Work on entire graph at once instead of just one node at a time — capture long distance
dependencies

Speed-ups
Scalable — works on >10000 nodes
Adaptable to different architectures

21% improvement over human experts and 18% improvement over the prior state of the art
with 1bx faster convergence than simulated annealing

Their figures make no sense
Reproducibility
Loss of explainability

Mainly putting together existing components (GraphSage, Transformer, etc.) and so limited
novelty from an ML perspective

Poor explanation of why each technique is useful and why decisions were made

» Author Suggestions:
« Benchmark evaluation on new hardware
» |Less effort for maintenance when new hardware is released

» Decrease carbon footprint of machine learning

» Wider usage:
» Quite new so not much usage yet
» People are doing similar work:

» Could use it for finding new strategies for compiler optimisation in general, or to look at relationships
between coupled optimisation problems

Discussion

* Would you use a compiler that you can't explain?

* |s ML compilation in this way substantially different enough from things like autotuning?

Yangi Zhou, Sudip Roy, Amirali Abdolrashidi, Daniel Wong, Peter Ma, Qiumin Xu, Hanxiao Liu, Mangpo Phitchaya Phothilimtha, Shen Wang, Anna Goldie,
Azalia Mirhoseini, and James Laudon. 2020. Transferable graph optimizers for ML compilers. In Proceedings of the 34th International Conference on Neural
Information Processing Systems (NIPS'20). Curran Associates Inc., Red Hook, NY, USA, Article 1161, 13844-13855.

Kaufman, Samuel J. et al. “A Learned Performance Model for Tensor Processing Units.” Conference on Machine Learning and Systems (2021).
Xie, Xinfeng et al. “A Transferable Approach for Partitioning Machine Learning Models on Multi-Chip-Modules.” ArXiv abs/2112.04041 (2021): n. pag.

Addanki, Ravichandra, et al. "Placeto: Learning generalizable device placement algorithms for distributed machine learning." arXiv preprint arXiv:1906.08879
(2019).

Valentin Dalibard, Michael Schaarschmidt, and Eiko Yoneki. 2017. BOAT: Building Auto-Tuners with Structured Bayesian Optimization. In Proceedings of the
26th International Conference on World Wide Web (WWW '17). International World Wide Web Conferences Steering Committee, Republic and Canton of
Geneva, CHE, 479-488. https://doi.org/10.1145/3038912.3052662

William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive representation learning on large graphs. In Proceedings of the 31st International
Conference on Neural Information Processing Systems (NIPS'17). Curran Associates Inc., Red Hook, NY, USA, 1025-1035.

	Transferable Graph Optimisers for ML Compilers	
	What’s the problem?
	What was previous work, why was it insufficient?
	Learning solutions need resource efficiency, speed, �AND �To tackle optimisations that affect each other!�
	A Reinforcement Learning Approach
	Multiple Dependent Optimisation Tasks
	Evaluation
	Strengths
	Critique
	Who used it? Where might it be used?
	Discussion
	References

