
Transferable Graph
Optimisers for ML
Compilers

Zhou et al.

Google

What’s the problem?

Model

Hardware

Compiler

Lots of data, lots of
compute power, big

graphs of computation

Cloud computation, Accelarators ie.
GPUs, TPUs (Distributed, and different
architectures have different strengths)

1. Device placement
2. Operation Scheduling

3. Operation Fusion

What was previous work, why was it insufficient?

• Device-specific optimisation by compilers (TensorFlow, XLA, Glow, MLIR) – need to have
seen device before

• Heuristic methods on each individual problem ie. Auto-tuning etc.

• Other Reinforcement Learning methods:

• expensive to train,

• focused on one problem with no knowledge sharing

Learning solutions need resource efficiency, speed,
AND

To tackle optimisations that affect each other!

A Reinforcement Learning Approach

• GraphSAGE to capture
topological information in
the compuatational graph

• Scalable attention network
to capture long-ranged
dependencies

• Feature modulation to allow
specialisation on graph type
without increasing
parameter numbers

Multiple Dependent Optimisation Tasks

• Recurrent
attention layers
for each task

• Parameters
shared across
tasks.

Evaluation

• Methods

Proximal Policy Optimisation

Large negative reward for bad optimisation

6 different architectures

4 baseline comparisons

Up to 80000 nodes (8-layers)

• Findings

Strengths

• Generalises across different graphs and tasks – move varied set

• Work on entire graph at once instead of just one node at a time – capture long distance
dependencies

• Speed-ups

• Scalable – works on >10000 nodes

• Adaptable to different architectures

• 21% improvement over human experts and 18% improvement over the prior state of the art
with 15x faster convergence than simulated annealing

Critique

• Their figures make no sense

• Reproducibility

• Loss of explainability

• Mainly putting together existing components (GraphSage, Transformer, etc.) and so limited
novelty from an ML perspective

• Poor explanation of why each technique is useful and why decisions were made

Who used it? Where might it be used?

• Author Suggestions:

• Benchmark evaluation on new hardware

• Less effort for maintenance when new hardware is released

• Decrease carbon footprint of machine learning

• Wider usage:

• Quite new so not much usage yet

• People are doing similar work:

• Could use it for finding new strategies for compiler optimisation in general, or to look at relationships
between coupled optimisation problems

Discussion

• Would you use a compiler that you can’t explain?

• Is ML compilation in this way substantially different enough from things like autotuning?

References

• Yanqi Zhou, Sudip Roy, Amirali Abdolrashidi, Daniel Wong, Peter Ma, Qiumin Xu, Hanxiao Liu, Mangpo Phitchaya Phothilimtha, Shen Wang, Anna Goldie,
Azalia Mirhoseini, and James Laudon. 2020. Transferable graph optimizers for ML compilers. In Proceedings of the 34th International Conference on Neural
Information Processing Systems (NIPS'20). Curran Associates Inc., Red Hook, NY, USA, Article 1161, 13844–13855.

• Kaufman, Samuel J. et al. “A Learned Performance Model for Tensor Processing Units.” Conference on Machine Learning and Systems (2021).

• Xie, Xinfeng et al. “A Transferable Approach for Partitioning Machine Learning Models on Multi-Chip-Modules.” ArXiv abs/2112.04041 (2021): n. pag.

• Addanki, Ravichandra, et al. "Placeto: Learning generalizable device placement algorithms for distributed machine learning." arXiv preprint arXiv:1906.08879
(2019).

• Valentin Dalibard, Michael Schaarschmidt, and Eiko Yoneki. 2017. BOAT: Building Auto-Tuners with Structured Bayesian Optimization. In Proceedings of the
26th International Conference on World Wide Web (WWW '17). International World Wide Web Conferences Steering Committee, Republic and Canton of
Geneva, CHE, 479–488. https://doi.org/10.1145/3038912.3052662

• William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive representation learning on large graphs. In Proceedings of the 31st International
Conference on Neural Information Processing Systems (NIPS'17). Curran Associates Inc., Red Hook, NY, USA, 1025–1035.

	Transferable Graph Optimisers for ML Compilers	
	What’s the problem?
	What was previous work, why was it insufficient?
	Learning solutions need resource efficiency, speed, �AND �To tackle optimisations that affect each other!�
	A Reinforcement Learning Approach
	Multiple Dependent Optimisation Tasks
	Evaluation
	Strengths
	Critique
	Who used it? Where might it be used?
	Discussion
	References

