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What’s the problem?

Model

Hardware

Compiler

Lots of data, lots of 
compute power, big 

graphs of computation

Cloud computation, Accelarators ie. 
GPUs, TPUs (Distributed, and different 
architectures have different strengths)

1. Device placement
2. Operation Scheduling

3. Operation Fusion



What was previous work, why was it insufficient?

• Device-specific optimisation by compilers (TensorFlow, XLA, Glow, MLIR) – need to have 
seen device before

• Heuristic methods on each individual problem ie. Auto-tuning etc.

• Other Reinforcement Learning methods:

• expensive to train, 

• focused on one problem with no knowledge sharing



Learning solutions need resource efficiency, speed, 
AND 

To tackle optimisations that affect each other!



A Reinforcement Learning Approach

• GraphSAGE to capture 
topological information in 
the compuatational graph

• Scalable attention network 
to capture long-ranged 
dependencies

• Feature modulation to allow 
specialisation on graph type 
without increasing 
parameter numbers



Multiple Dependent Optimisation Tasks

• Recurrent 
attention layers 
for each task

• Parameters 
shared across 
tasks.



Evaluation

• Methods

Proximal Policy Optimisation

Large negative reward for bad optimisation

6 different architectures

4 baseline comparisons

Up to 80000 nodes (8-layers)

• Findings



Strengths

• Generalises across different graphs and tasks – move varied set

• Work on entire graph at once instead of just one node at a time – capture long distance 
dependencies

• Speed-ups

• Scalable – works on >10000 nodes

• Adaptable to different architectures

• 21% improvement over human experts and 18% improvement over the prior state of the art 
with 15x faster convergence than simulated annealing



Critique

• Their figures make no sense

• Reproducibility

• Loss of explainability

• Mainly putting together existing components (GraphSage, Transformer, etc.) and so limited 
novelty from an ML perspective

• Poor explanation of why each technique is useful and why decisions were made



Who used it? Where might it be used?

• Author Suggestions:

• Benchmark evaluation on new hardware

• Less effort for maintenance when new hardware is released

• Decrease carbon footprint of machine learning

• Wider usage:

• Quite new so not much usage yet

• People are doing similar work:

• Could use it for finding new strategies for compiler optimisation in general, or to look at relationships 
between coupled optimisation problems



Discussion

• Would you use a compiler that you can’t explain?

• Is ML compilation in this way substantially different enough from things like autotuning?
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