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What’s the problem?

Lots of data, lots of
compute power, big
graphs of computation

1. Device placement
2. Operation Scheduling
3. Operation Fusion

Cloud computation, Accelarators ie.
Hardware GPUs, TPUs (Distributed, and different
architectures have different strengths)




What was previous work, why was it insufficient?

» Device-specific optimisation by compilers (TensorFlow, XLA, Glow, MLIR) — need to have
seen device before O 9 ¢+ & m)

» Heuristic methods on each individual problem ie. Auto-tuning etc.

» Other Reinforcement Learning methods:
* expensive to train,

» focused on one problem with no knowledge sharing




Learning solutions need resource efficiency, speed,
AND
To tackle optimisations that affect each other!



A Reinforcement Learning Approach

» GraphSAGE to capture
topological information In
the compuatational graph

» Scalable attention network
to capture long-ranged
dependencies

« Feature modulation to allow
specialisation on graph type
without increasing
parameter numbers
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Figure 3: Overview of GO: An end-to-end graph policy network that combines graph embedding and
sequential attention. /N: Number of Nodes, a: Size of the action space (number of devices, number
of priority levels, etc.). Node features are sorted in topological order.




Multiple Dependent Optimisation Tasks

Recurrent
attention layers
for each task
Parameters
shared across
tasks.
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Multi-task policy network that extends GO's policy network with additional recurrent attention
layers for each task and residual connections. GE: Graph Embedding, FC: Fully-Connected
Layer, Nxf: fusion action dimension, Fxd: placement action dimension, Nxs: scheduling action
dimension.




Evaluation
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Table 2: Run time comparison between GO-one, human expert, TensorFlow METIS, and hierarchical
device placement (HDP) on six graphs (RNNLM, GNMT, Transformer-XL, Inception, AmoebaNet,

U p 1(0) 80000 nodes (8_|ayers) and WaveNet). Search speed up is the policy network training time speed up compared to HDP

(reported values are averages of six runs).

Speedup TV default  5A O-ome Speedup T default  5A Gi-one

NMT {2GPU) 282 3 319 {+0.37) RNNLM (8GPU)  -1.39 -238  -LIT (40.11)
NMT (2P -0L.59 534 1203 (+12.92)  TRE-XL 2GPU) 2427 25.1 28,51 (+4.24)
NMT (8GPI) 10,47 10,47 1265 (+2.18) TRE-XL. (4GPL) 17.05 1932 1999 (+2.9d4)
RNNLM {4GPL) 1.4 1.0 LZ3 {+0.1%) TRE-XL (8GPU)}  21.66 26.25 3148 (+9.5I)

Table 3; Speedup of each fusion policy normalized to the no-fusion case (reported in %), The number
in the parentheses is the improvement of our work over the default fusion,




Generalises across different graphs and tasks — move varied set

Work on entire graph at once instead of just one node at a time — capture long distance
dependencies

Speed-ups
Scalable — works on >10000 nodes
Adaptable to different architectures

21% improvement over human experts and 18% improvement over the prior state of the art
with 1bx faster convergence than simulated annealing




Their figures make no sense
Reproducibility
Loss of explainability

Mainly putting together existing components (GraphSage, Transformer, etc.) and so limited
novelty from an ML perspective

Poor explanation of why each technique is useful and why decisions were made




» Author Suggestions:
« Benchmark evaluation on new hardware
» |Less effort for maintenance when new hardware is released

» Decrease carbon footprint of machine learning

» Wider usage:
» Quite new so not much usage yet
» People are doing similar work:

» Could use it for finding new strategies for compiler optimisation in general, or to look at relationships
between coupled optimisation problems




Discussion

* Would you use a compiler that you can't explain?

* |s ML compilation in this way substantially different enough from things like autotuning?
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