Equality Saturation for Tensor Graph
SuperOptimization

Authors: Y. Yang, PM. Phothilimthana, Y. R. Wang, M. Willsey, S. Roy, J. Piennar
MLSys'21
Presenter: Grant Wilkins (gfw27)

* Neural networks have tensor
representations programmatically

. . * Tensors can be rewritten to optimize
Sttuating compilation

 State of the art: TASO

thlS Study * Improve on previous methods by

attempting to consider many more
possible representations

TASO (Tensor Algebra SuperOptimizer)

Takes arbitrary DNN model

Auto-generates graph transformations

(A) TensorFlow (B) TensorFlow XLA (C) TensorRT B (D) TASO
to build a large search space of 7
. . : ’ 504 N 1.3x B
potential computation graphs. £ . | . y
1.1x |5 -
[61 15 4
Employs cost-based search algorithm 5 L3x| |
[0.5
- 03 2 5 3.1x
to explore the space § § L
A B C D A B C D A B C D A B C D A B C D
Inception-v3 SqueezeNet NasNet-A ResNeXt-50 BERT-base

Automatically discovers highly

optimized computation graphs.

What this paper adds?

« Tensat: Optimization of search
for equivalent optimal graphs.

« Equality saturation

« Exploration phase: generating
and rewriting all possibilities

« Extraction phase: selects graph
with lowest “cost”

e Authors find 16% faster than
TASO, and reduces

optimization by 300x

Search time (s) Runtime speedup (%)
TASO TENSAT | TASO TENSAT
NasRNN 177.3 0.5 45.4 68.9
BERT 13.6 1.4 8.5 9.2

ResNeXt-50 25.3 0.7 5.5 8.8

NasNet-A 1226 10.6 1.9 7.3
SqueezeNet 16.4 0.3 6.7 24.5

VGG-19 8.9 0.4 8.9 8.9
Inception-v3 68.6 3.1 6.3 10.0

Table 1. Comparison of optimization time and runtime speedup
of the optimized computation graphs over the original graphs,
TASO (Jia et al., 2019a) v.s. TENSAT.

: « Whatis an e-graph?
Equa—llty * Just set of equivalence relations with

. e-nodes
Sa—mr a—tlon * Represents many terms to optimize

 Whatis an e-class?

* Represents terms under rewrite

* Groups equivalent terms
 Whatis an e-node?

* |n e-classes, contains e-classes as

children

* Terms built out of applied operators

Dotted: e-class
Blocks: nodes

Example: Exploration

Original Problem: (a*2)/ 2

..! i‘ * ..! *
- - _I__#
1 L R e e TP L LT CEETE e
: B *) B 1:
.| | eeswssesd Casw, | 0000 2 2 M e | eesssseatieen, |
" # "
H [— H
& - -
: H H
* H x H * H
< | << : << :
& - -
H H H
& - -
— H — H H
< J ' E :
h - Taww san” =
B 4 E 4 i 4 "4 H
/ \ EEEEsssEEs e . &, —=--==-===_ | ¥ eawss K., .
" H H "~ "~ - "~ H
H : H
H : :
H :
H :
H :
H :
H :
H : H
H H : H
- - L
+++++++++++++++ ﬂ._ "1111111111"‘“.' Tramamananmnan”
i

According to Tensat and rewrite rules, the e-graph expands
and you find all equivalent programs.

1. x*2->x<<1
2. (x*y)/z->x*(y/z)
3. x/x->1
4. x*1->x

Example: Extraction

Define a cost function, then pick least costly representation

s T . S (R e— S

++

* Old: Greedy extraction:
HOW are We Calculate all of the costs and then
° take the minimum.
gowng to
 NEW: Integer Linear Programming (ILP)
e)Ctr'aCt P, extraction
° * Binary x_i for each node

Wi) — 3 i e C_icostfor each node
* Constraint 2: Must have a root node

Subject to: « Constraint 3: Requires a child in
z; € {0, 1}, (m each e-class to be selected
ge;m:L @ « Constraints 4 and 5: Keeps a proper
S 3T 3) Topological order of selection
jeem « Without proof: always gives a valid

v & bty — By —64-A1 —u) 20, 14

Ym0 <, <1,) graph with lowest cost.

Cycles

Solve cycles through efficient
filtering by keeping a log of
the previous graphs and
noting if there’s a loop
introduced from new rewrite.

At the end backtrack depth-

first and remove last node that
caused the cycle.

\
\\

P ,—/\ """

split

\

\
\
\

Figure 3. Example on how a valid rewrite can introduce cycles into
the e-graph. RHS is the resulting e-graph after applying the rewrite
rule from Figure 2 to the LHS. Dotted lines circles the e-classes.
We omit the e-classes with a single node for clarity. If the node
splity is picked in the right e-class, then the resulting graph will
have a cycle (indicated by the red edges).

How does Tensat actually
perform?

Finding: Tensat is more performant than TASO
across the board for tensor optimization

70 BB TASO M Tensat

60

Speedup percentage
w B (8,
o (=] o

N
o

[ar}
o

“359\\«“ 2e¥’ aesﬂeﬂ “ex-:q see?® NGO | oot

wF
1o mce@“

Figure 4. Speedup percentage of the optimized

graph with respect to the original graph: TASO v.s.

TENSAT. Each setting (optimizer x benchmark)
is run for five times, and we plot the mean and
standard error for the measurements.

HEl TASO total TASO best M Tensat
103 I
)
s ., M
b 10
-
Q
£
=
™
8100 I 115.1;'
£ I I 13.4x
Q
o
9.5x
10° 34.6x
379.4x 20.0x 127.4x
59.9x
||
W et el P ezer GO et =t
Wost BET o edET (ase que ! e

Figure 5. Optimization time (log scale): TASO
v.s. TENSAT. “TASO total” is the total time of
TASO search. “TASO best” indicates when TASO
found its best result; achieving this time would
require an oracle telling it when to stop.

101 .
8_
)
o
8
=)
36
@
a
S
T 41
@
@
o
0
2,
—=— TASO
—s— Tensat
0L, : :
0 20 40 60

Optimizer time (seconds)

Figure 6. Speedup over opti-
mization time for TASO and
TENSAT, on Inception-v3. We
use a timeout of 60 seconds.

Finding: There is a tradeoff for how much you
can grow your search space in memory and
runtime.

90 103

107+
v 80 0
©
g S 107 108 -
c 701 o
3 & S
g 60° ! ! e 101, glo]
30+ £ c
% t g 104' —=— NasRNN
© 201 2 1094 —=— BERT
g_ é 103 1 ResNeXt
(] 10+ g— —=— NasNet-A
o101 —=— Squeeze.
0! 1024 = = =] —=— VGG
0 1 2 3 0 1 2 3 0 1 2 3 (% _Incept.
#iter of multi pattern rewrites #iter of multi pattern rewrites #iter of multi pattern rewrites

Figure 7. Effect of varying the number of iterations of multi-pattern rewrites kmuii. For BERT, NasNet-A, NasRNN, Inception-v3, the ILP
solver times out at one hour for knui = 3. Left: speedup of the optimized graphs (the y-axis is split for clarity). Middle: time taken by
TENSAT. Right: final e-graph size (number of e-nodes). The middle and right figures are in log scale.

 Tensat is a tool to optimize tensor rewrites

* Through compact e-graph representation,
exponentially generates alternative rewrites of

Big Picmre tensor programs

 Performs equality saturation: two-phase approach

Summary o exored comrth apace and ode ot o

selection for rewrites

 Achieves significant run-time and optimization
advances over TASO

My critique

Cons: Pros:
« Unclear that cost function used Very lucid explanation of
is optimal for the e-graph equivalence graphs.
selection and the authors e Demonstrates dominant results
should experiment with over TASO.
different ones. * Clearly documented ideas behind
« Authoris quick to assume methodology and sourcing of
relevance of work without clear different portions of solution.

motivation beyond speedup.
e Memory overhead of solution
discussed but not quantified.

Questions?

Table 2. Operators supported by TENSAT. There are four types for the nodes in our representation: tensor type (T), string type (S), integer
type (N), and tensor tuple type (TT). The integer type is used to represent parameters of the operators, such as stride, axis, and also
padding and activation modes (by representing different modes using different integers). The more complex, variable-length parameters
(e.g. shape, axes permutation) are represented using the string type according to the specified formats.

Operator Description Inputs Type signature
ewadd Element-wise addition input;, inputs (T, T)—=T
ewmul Element-wise multiplication inputy, inputs (T, T) T
matmul Matrix multiplication activation, input;, inputy NNTT) —T
conv “ Grouped convolution stridey,, stride,,, pad., act., input, weight (NN,ONON,T,T) —T

relu Relu activation input T—T
tanh Tanh activation input T—T
sigmoid Sigmoid activation input T—T
poolmax Max pooling input, kemel{h,w}, stride{ how}s pad.,act. (LN, N,N,N,N,N)—>T
poolavg Average pooling input, kemel{h,w}, strideqp,,}, pad., act. (T, N, N, N, N,N,N) —» T
transpose ” Transpose input, permutation (T,S) —»T
enlarge © Pad a convolution kernel with zeros input, ref-input (I,LT) =T
concat,, d Concatenate axis, inputy, ..., input, (N,T,...,T) =T
split © Split a tensor into two axis, input (N.T)—=TT
splitp Get the first output from split input IT—>T
splity Get the second output from split input TT —-T
merge 7 Update weight to merge grouped conv weight, count (TLN) =T
reshape ¢ Reshape tensor input, shape (T,S) =T
input Input tensor identifier " S—T
weight Weight tensor identifier " S—T
noop * Combine the outputs of the graph inputy, inputs (I, T) =»T

Graph Runtime (ms) Original Greedy ILP

BERT 1.88 1.88 1.73
NasRNN 1.85 1.15 1.10
NasNet-A 17.8 22.5 16.6

Table 4. Comparison between greedy extraction and ILP extrac-
tion, on BERT, NasRNN, and NasNet-A. This table shows the
runtime of the original graphs and the optimized graphs by greedy
extraction and ILP extraction. The exploration phase is run with
kmulti =1

Extraction With cycle Without
time (s) e - redl int cycle
. 2 S300 S300 5103
NsRNN) a0 s3s00 3567
NasNe-A) 360 sag0 75

Table 5. Effect of whether or not to include cycle constraints in ILP
on extraction time (in seconds), on BERT, NasRNN, and NasNet-
A. For the cycle constraints, we compare both using real variables
and using integer variables for the topological order variables %,,.

Exploration time (s) knus Vanilla Efficient

: 0.18 0.17
eI P 32.9 0.89

0 1.30 0.08

NasRNN p 2932 1.47
: 3.76 127

NasNet-A 2 >3600 8.62

Table 6. Comparison between vanilla cycle filtering and efficient
cycle filtering, on the exploration phase time (in seconds) for BERT,
NasRNN, and NasNet-A.

	Equality Saturation for Tensor Graph SuperOptimization
	Situating this Study
	Slide Number 3
	Slide Number 4
	Equality Saturation
	Example: Exploration
	Example: Extraction
	How are we going to extract?
	Cycles��Solve cycles through efficient filtering by keeping a log of the previous graphs and noting if there’s a loop introduced from new rewrite.��At the end backtrack depth-first and remove last node that caused the cycle.
	How does Tensat actually perform?
	Finding: Tensat is more performant than TASO across the board for tensor optimization
	Finding: There is a tradeoff for how much you can grow your search space in memory and runtime.
	Big Picture Summary
	My critique
	Questions?
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19

