
Equality Saturation for Tensor Graph 
SuperOptimization
Authors: Y. Yang, P.M. Phothilimthana, Y. R. Wang, M. Willsey, S. Roy, J. Piennar

MLSys’21

Presenter: Grant Wilkins (gfw27)



Situating 
this Study

• Neural networks have tensor 
representations programmatically

• Tensors can be rewritten to optimize 
compilation

• State of the art: TASO

• Improve on previous methods by 
attempting to consider many more 
possible representations



TASO (Tensor Algebra SuperOptimizer)
• Takes arbitrary DNN model 

• Auto-generates graph transformations 

to build a large search space of 

potential computation graphs. 

• Employs cost-based search algorithm 

to explore the space 

• Automatically discovers highly 

optimized computation graphs.



What this paper adds?
• Tensat: Optimization of search 

for equivalent optimal graphs.
• Equality saturation
• Exploration phase: generating 

and rewriting all possibilities
• Extraction phase: selects graph 

with lowest “cost”
• Authors find 16% faster than 

TASO, and reduces 
optimization by 300x



Equality 
Saturation

• What is an e-graph?
• Just set of equivalence relations with 

e-nodes
• Represents many terms to optimize

• What is an e-class?
• Represents terms under rewrite
• Groups equivalent terms

• What is an e-node?
• In e-classes, contains e-classes as 

children
• Terms built out of applied operators

Dotted: e-class
Blocks: nodes



Example: Exploration

According to Tensat and rewrite rules, the e-graph expands 
and you find all equivalent programs.

Original Problem: (a * 2) / 2

1. x * 2 -> x << 1
2. (x * y) / z -> x * (y / z)

3. x / x -> 1
4. x * 1 -> x



Example: Extraction
Define a cost function, then pick least costly representation

(a * 2) / 2 -> a



How are we 
going to 
extract?

• Old: Greedy extraction:
• Calculate all of the costs and then 

take the minimum.

• NEW: Integer Linear Programming (ILP) 
extraction

• Binary x_i for each node 
• c_i cost for each node
• Constraint 2: Must have a root node
• Constraint 3: Requires a child in 

each e-class to be selected
• Constraints 4 and 5: Keeps a proper 

Topological order of selection
• Without proof: always gives a valid 

graph with lowest cost.



Cycles

Solve cycles through efficient 
filtering by keeping a log of 
the previous graphs and 
noting if there’s a loop 
introduced from new rewrite.

At the end backtrack depth-
first and remove last node that 
caused the cycle.



How does Tensat actually 
perform?



Finding: Tensat is more performant than TASO 
across the board for tensor optimization



Finding: There is a tradeoff for how much you 
can grow your search space in memory and 
runtime.



Big Picture 
Summary

• Tensat is a tool to optimize tensor rewrites

• Through compact e-graph representation, 
exponentially generates alternative rewrites of 
tensor programs

• Performs equality saturation: two-phase approach 
to expand search space and reduce runtime for 
selection for rewrites

• Achieves significant run-time and optimization 
advances over TASO 



My critique
Cons:
• Unclear that cost function used 

is optimal for the e-graph 
selection and the authors 
should experiment with 
different ones.

• Author is quick to assume 
relevance of work without clear 
motivation beyond speedup.

• Memory overhead of solution 
discussed but not quantified.

Pros:
• Very lucid explanation of 

equivalence graphs.
• Demonstrates dominant results 

over TASO.
• Clearly documented ideas behind 

methodology and sourcing of 
different portions of solution.



Questions?










	Equality Saturation for Tensor Graph SuperOptimization
	Situating this Study
	Slide Number 3
	Slide Number 4
	Equality Saturation
	Example: Exploration
	Example: Extraction
	How are we going to extract?
	Cycles��Solve cycles through efficient filtering by keeping a log of the previous graphs and noting if there’s a loop introduced from new rewrite.��At the end backtrack depth-first and remove last node that caused the cycle.
	How does Tensat actually perform?
	Finding: Tensat is more performant than TASO across the board for tensor optimization
	Finding: There is a tradeoff for how much you can grow your search space in memory and runtime.
	Big Picture Summary
	My critique
	Questions?
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19

