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Situating 
this Study

• Neural networks have tensor 
representations programmatically

• Tensors can be rewritten to optimize 
compilation

• State of the art: TASO

• Improve on previous methods by 
attempting to consider many more 
possible representations



TASO (Tensor Algebra SuperOptimizer)
• Takes arbitrary DNN model 

• Auto-generates graph transformations 

to build a large search space of 

potential computation graphs. 

• Employs cost-based search algorithm 

to explore the space 

• Automatically discovers highly 

optimized computation graphs.



What this paper adds?
• Tensat: Optimization of search 

for equivalent optimal graphs.
• Equality saturation
• Exploration phase: generating 

and rewriting all possibilities
• Extraction phase: selects graph 

with lowest “cost”
• Authors find 16% faster than 

TASO, and reduces 
optimization by 300x



Equality 
Saturation

• What is an e-graph?
• Just set of equivalence relations with 

e-nodes
• Represents many terms to optimize

• What is an e-class?
• Represents terms under rewrite
• Groups equivalent terms

• What is an e-node?
• In e-classes, contains e-classes as 

children
• Terms built out of applied operators

Dotted: e-class
Blocks: nodes



Example: Exploration

According to Tensat and rewrite rules, the e-graph expands 
and you find all equivalent programs.

Original Problem: (a * 2) / 2

1. x * 2 -> x << 1
2. (x * y) / z -> x * (y / z)

3. x / x -> 1
4. x * 1 -> x



Example: Extraction
Define a cost function, then pick least costly representation

(a * 2) / 2 -> a



How are we 
going to 
extract?

• Old: Greedy extraction:
• Calculate all of the costs and then 

take the minimum.

• NEW: Integer Linear Programming (ILP) 
extraction

• Binary x_i for each node 
• c_i cost for each node
• Constraint 2: Must have a root node
• Constraint 3: Requires a child in 

each e-class to be selected
• Constraints 4 and 5: Keeps a proper 

Topological order of selection
• Without proof: always gives a valid 

graph with lowest cost.



Cycles

Solve cycles through efficient 
filtering by keeping a log of 
the previous graphs and 
noting if there’s a loop 
introduced from new rewrite.

At the end backtrack depth-
first and remove last node that 
caused the cycle.



How does Tensat actually 
perform?



Finding: Tensat is more performant than TASO 
across the board for tensor optimization



Finding: There is a tradeoff for how much you 
can grow your search space in memory and 
runtime.



Big Picture 
Summary

• Tensat is a tool to optimize tensor rewrites

• Through compact e-graph representation, 
exponentially generates alternative rewrites of 
tensor programs

• Performs equality saturation: two-phase approach 
to expand search space and reduce runtime for 
selection for rewrites

• Achieves significant run-time and optimization 
advances over TASO 



My critique
Cons:
• Unclear that cost function used 

is optimal for the e-graph 
selection and the authors 
should experiment with 
different ones.

• Author is quick to assume 
relevance of work without clear 
motivation beyond speedup.

• Memory overhead of solution 
discussed but not quantified.

Pros:
• Very lucid explanation of 

equivalence graphs.
• Demonstrates dominant results 

over TASO.
• Clearly documented ideas behind 

methodology and sourcing of 
different portions of solution.



Questions?
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