55 UNIVERSITY OF
P CAMBRIDGE

Ansor: Generating High-Performance Tensor
Programs for Deep Learning

R244: Large-Scale Data Processing and Optimisation

Felix Jonathan Rocke

Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu, Ameer Haj-Ali, Yida Wang, Jun
Yang, Danyang Zhuo, Koushik Sen, Joseph E. Gonzalez, and lon Stoica



Problem Statement

Improving the performance of deep learning models requires
Hardware-specific optimisations

Automatic Code-Generation
(ML Compiler, e.g. AutoTVM)

+ Less to no engineering effort necessary to
adapt to different/new hardware

- Performance is not always as good as with
manual optimisations

Manual Optimisation
(Operator Library, e.g. CuDNN)

- Significant engineering effort necessary to
adapt to different/new hardware

+ Performance is often better than automatic
generation



Template Guided Search

S
n Parameter Search
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1. Experts create hardware-specific
tensor code templates

Manual Template
Expert knowledge required in:
 Hardware architecture for 1.0 in range([{]):

o . for .0 i
e Optimisation techniques ‘”;Ol{ . 3niiarrlgre1;e( .

for i.1 in range(
2. Parameters are determined via an for j.1 in range([e)):

automatic search algorithm

C[...] += A[...] * B[...
for i.2 in range(fird):
for j.2 in range()):
D[...] = max(C[...], 0.0)



Sequential Program Construction

Beam Search with Early Pruning

* Programs are sequentially constructed
through a fixed sequence of decisions
e Uses unfolding rules for every node Incomplete Program
* Only the top-k candidates are kept , ,
i ) for 1.0 1in range(512):
e Cost function is used to evaluate for 3.0 in range(512):
incomplete programs D[...] = max(C[...], 0.0)
» Low accuracy of cost function at
the beginning of program creation
> Candidate programs are Candidate 1 ® Pruned
pruned to early Candidate 2
» Limited search space Candidate 3

Candidate 4 ¢ Pruned

A 4




Ansor Hierarchical Search

Jv High-level structure generation

1. High and low-level structures are

separated
2. Create search space of high-level

tensor programs JL Low-level detail samping
3. Sample high-level programs Complete Programs

uniformly from search space for i.0 in range(64):
4. Sample low-level features for 3.0 in range(64):

) for k.0 in range(512):

5. Fine-tune low-level features for i.1 in range(8):

for j.1 in range(8):
D[...] = ...

» No early pruning or limited options
» Greater search space covered JL Evolutionary fine-tuning

> Better programs Better Programs I



Ansor Overview

Split computational graph
into subgraphs

Schedule subgraph for
program sampling

Uniformly select initial
programs

Send programs to hardware
for measurements

Deep Learning Models

Partitioned subgraphs

Task Scheduler

Subgraph 1 Subgraph 2 Subgraph 3 _

One subgraph

Program Sampler

Sketch Generation Random Annotation

A batch of initial programs

Performance Tuner

Evolutionary Search Learned Cost Model

A batch of optimized programs

Measurer

Intel CPU ARM CPU NVIDIA GPU -

Execution time of programs

Provide feedback to the
individual steps, e.g.
updates to the learned
cost model



GPU Benchmark Results

B PyTorch M® TensorFlow M TensorRT-TF B AutoTVM I Ansor (ours)

Batch size =1
1.0
2 08
€ 0.4
= 0.21
(@)
y— i
g“_J 0.0 ResNet-50 Mobilenet V2 3D-ResNet  DCGAN BERT
8 Batch size = 16
N 1.0-
© 0.8
€ 0.6-
© 0.4
< 0.2-
0.0-

ResNet-50 Mobilenet V2 3D-ResNet DCGAN BERT

Results for Nvidia V100



Pros & Cons / Discussion

Cons:
e An ARMv8 CPU is used in the benchmarks
» However, it is not specified if NEON is enabled, unlike for the x86
CPU, where it is stated that AVX-512 was used
* No multi-objective optimisations

Pros:

* Simplifies model optimisation since manual kernel or template
development is replaced

* Better performance than hand-optimisation



