
Junru Shao, Xiyou Zhou, Siyuan Feng, Bohan Hou,
Ruihang Lai, Hongyi Jin, Wuwei Lin, Masahiro
Masuda, Cody Hao Yu, Tianqi Chen

Tensor Program
Optimization with
Probabilistic
Programs

Presenter: Qianyi Liu

Context
● Current deep learning frameworks relies on vendor-specific operator libraries

(e.g. CuDNN) to optimise deployment of neural networks on hardware
○ Choose from logically equivalent programs with significantly different

performance
○ Huge engineering effort + domain knowledge

● Automatic program optimisation — machine learning
○ Two crucial components
○ A search space (loop transformation, vectorisation, threading patterns, and

hardware acceleration)
○ Learning-based search algorithms

A typical workflow for automatic tensor
program optimization

MetaSchedule

● The search space itself fundamentally limits the best possible performance
search algorithms can get.

● Defining the search space for a wide range of tensor programs is challenging
○ S(e0) is highly dependent on e0
○ Differs in different hardware domains
○ Hardware and model settings evolve -> update S(e0)

● This paper aims to provide a programmable abstraction to construct S(e0) in a
composable and modular way

● MetaSchedule: a domain-specific probabilistic programming language
abstraction to construct a search space of tensor programs

Stochastic Search Space Construction
● Parameterize an optimisation search space by the initial program followed by a

sequence of transformations on the program
● Allow further parameterization of each transformation step with random

variables, drawn from sampling distributions

Defining stochastic transformation in
MetaSchedule

Modular Search Space Composition

● Aim: make transformation reusable, make MetaSchedule more easy to use
● Introduce transformation module

○ Atomic stochastic transformation
○ Composition of program analysis, sampling as well as smaller transformations

A generic learning-driven framework to find
an optimized program

1. Search algorithm samples the MetaSchedule program to obtain a collection of traces
2. An evolutionary search algorithm that proposes a new variant of the trace by mutating

the RV -> validator + cost model -> accept
3. Proxy cost model: a tree-boosting-based cost model – updated throughout the

process

Experiment 1: Expressiveness to cover
common optimisation techniques

Target: a diverse set of operators and subgraphs

● MetaSchedule: our approach
● TVM (AutoTVM and Ansor) — SOTA tensor program optimisation system
● PyTorch — optimised with vendor libraries

Experiment 2: optimising End-to-End deep
learning models

Conclusion: MetaSchedule performance is on parity with TVM, while surpassing PyTorch in
all cases -> the MetaSchedule framework delivers end-to-end performance

Experiment 3: Search space composition
and hardware-specific modules

● By progressively enriching the search space, the performance of optimized tensor
programs consistently increases -> translate to end-to-end model performance

● Convenience of customization and composition

Takeaways

Pros:

● A novel piece of work — MetaSchedule, probabilistic programmable abstraction
● Decouples the search space construction from the search — enabling further

customisation without surgical changes to the system
● A simple yet powerful generalisation of existing tensor program optimisation methods

Cons:

● Lack of further evaluation on the search space construction process and program
optimisation process

● Didn’t explain in detail the advantage over previous deterministic approaches using
other DSLs

Discussion

