PREGEL: A SYSTEM FOR LARGE-SCALE GRAPH PROCESSING

What's a few billion graph nodes anyway?

CONTEXT MapReduce Sawzall PigLatin Dryad CGM

Scalable, fault-tolerant platform with a usable API that can express arbitrary graph algorithms.

KEY IDEAS

Graphs are weird

- Memory access
 locality
- Work per vertex
- Parallelism
- Relatively Sparsely
 Connected
- Failure!

- Supersteps
- Compute at each vertex
- Messages

- Synchronous
- Compute at each vertex
- Messages

IMPLEMENTATION

Vertex = String identifiers + Mutable Value + edges

<u>This Photo</u> by Unknown Author is licensed under <u>CC BY-SA</u>

Program

- Written in C++ API
- Each vertex is typed
- Override Compute()
- Message Passing
- Lots of file formats allowed

Output = Set of Values Determined by Vertices

IMPLEMENTATION

- Pure Message Passing
- Supersteps
- Halt votes
- Combiners
- Aggregators
- Partial Ordering for Topology Mutations

EVALUATION

- Experiments on binary trees for scaling, lognormal random graphs to represent real life
- Single-Source Shortest Paths
- > 1 billion vertices and edges
- In 2010 there were 256 million websites, chrome only had 14.9% market share
- Now 30-50 billion are pages indexed by google
- More diverse tests?

out-degree 127.1 (thus over 127 billion edges in the

largest case): varying graph sizes on 800 worker

tasks scheduled on 300 multicore machines

Figure 8: SSSP—binary trees: varying graph sizes on 800 worker tasks scheduled on 300 multicore machines

CONTRIBUTIONS

- Scalable
- Model description
- Usability
- Performance satisfactory for billions of vertices
- PageRank, Shortest Path Finding, Bipartite Matching, Semi-Clustering

OC:

(x - /W

dS≥0

ANALYSIS

- What about asynchronous programs and concurrency issues?
- What about more dense graphs?
- What better ways of partitioning the graph are there?
- Pregel took off very quickly, this meant they couldn't make large changes to their API, was this bad?
- Think like a vertex good?
- Real graphs have skewed power law distributions!

I M P A C T

- Foundational for Google PageRank
- Inspired Facebook's Apache Giraph and Apache Spark's Graph library
- Useful for GNN processing (or at least what it inspired)
- Used for graph databases
- Showed scalability with simplicity
- Distribution

FURTHER WORK

- Not stored all in ram
- Relax synchronity
- Assigning vertices to machines dynamic repartitioning

			Partitioning		Execution Mode		Message Propagation	
Year	System		Edge-cut	Vertex-cut	Synchronous	Asynchronous	Push	Pull
2010	Pregel [119	9	✓		✓		✓	
2012	Apache Giraph [44		√		✓		\checkmark	
2012	GraphLab [114.]	116	 ✓ 			✓		✓
2012	Distributed GraphLab [11	5	 ✓ 			✓		✓
2012	PowerGraph [58	5		✓	 ✓ 	✓		✓
2013	GPS [152	2	 ✓ 		✓		\checkmark	
2013	GRACE [17]	7	 ✓ 			✓	\checkmark	
2015	PowerLyra [21		✓	✓	 ✓ 	✓		\checkmark

 Table 1. Categorization of Different Distributed Graph Processing Systems

https://dl.acm.org/doi/pdf/10.1145/3597428

REFERENCES:

[1] Grzegorz Malewicz, et al. 2010. Pregel: a system for large-scale graph processing. In Proceedings of the 2010 ACM SIGMOD International Conference on Management of data (SIGMOD '10), 135–146. https://doi.org/10.1145/1807167.1807184

[2] <u>Besta M, Gerstenberger R, Peter E, Fischer M, Podstawski M, Barthels C, Alonso G</u> and <u>Hoefler T</u>. (2023). Demystifying Graph Databases: Analysis and Taxonomy of Data Organization, System Designs, and Graph Queries. ACM Computing Surveys. 56:2. (1-40). Online publication date: 29-Feb-2024.

[3] <u>Vatter J</u>, <u>Mayer R</u> and <u>Jacobsen H</u>. (2023). The Evolution of Distributed Systems for Graph Neural Networks and Their Origin in Graph Processing and Deep Learning: A Survey. ACM Computing Surveys. 56:1. (1-37). Online publication date: 31-Jan-2024.

[4] J. Shun, G.E. Blelloch, Ligra: a lightweight graph processing framework for shared memory, in Proceedings of the 18th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (2013), pp. 135–146

[5] Luiz Barroso, Jeffrey Dean, and Urs Hoelzle, Web search for a planet: The Google Cluster Architecture. IEEE Micro 23(2), 2003, 22–28.