

PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs

Authors: J. Gonzalez, Y. Low, H. Gu, D. Bickson, C. Guestrin OSDI'12

Presenter: Grant Wilkins (gfw27)

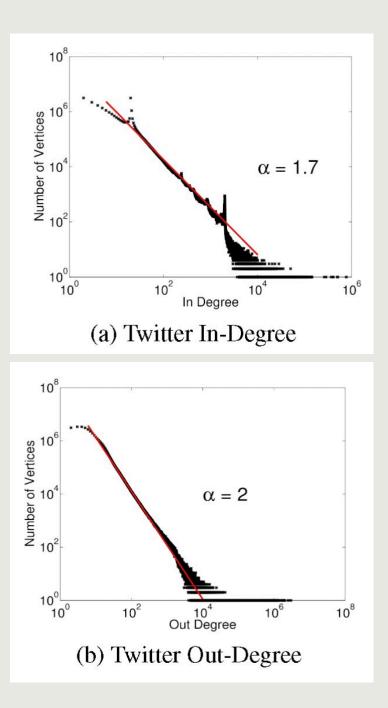
Situating this Study

- Large graph processing becoming more pressing due to growing social media networks, NLP,
- Pregel and GraphLab existing software for large-scale graph processing
- The problem(s): **Power-law degree** distribution

Power-Law Distribution

Definition: Probability that vertex has degree *d* is $P(d) = d^{-\alpha}$ where α is skewness factor to control distribution.

Problem: When a few nodes have a lot of connections, they bottleneck typical systems.



What this study aims to address?

- Work Balance
 - Power-law throws off symmetric graph computation
- Partitioning
 - Hard to split up a natural graph
- Communication
 - Difficult to update skewed graphs
- Storage
 - High-degree vertices carry lots of memory
- Computation
 - Individual vertex computation doesn't scale

Design of Powergraph

Gather, Apply, Scatter (GAS)

- *D_u*, *D_v*: vertex data (e.g. metadata & computation state)
- $D_{(u,v)}$: edge data between u, v
- Roughly same as GraphLab's implementation, but with parallel gather
- Very similar to Map-Reduce

interface GASVertexProgram(u) {
 // Run on gather_nbrs(u)
 gather (D_u , $D_{(u,v)}$, D_v) \rightarrow Accum
 sum (Accum left, Accum right) \rightarrow Accum
 apply (D_u , Accum) \rightarrow D_u^{new} // Run on scatter_nbrs(u)
 scatter (D_u^{new} , $D_{(u,v)}$, D_v) \rightarrow ($D_{(u,v)}^{new}$, Accum)
}

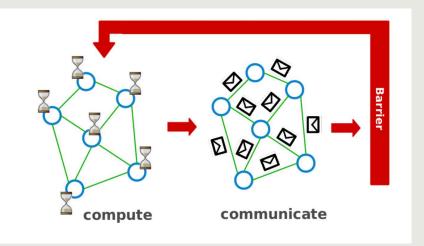
Delta Caching

Algorithm 1: Vertex-Program Execution Semantics

Input: Center vertex *u* if cached accumulator a_u is empty then foreach neighbor *v* in gather_nbrs(*u*) do $a_u \leftarrow \operatorname{sum}(a_u, \operatorname{gather}(D_u, D_{(u,v)}, D_v))$ end end $D_u \leftarrow \operatorname{apply}(D_u, a_u)$ foreach neighbor *v* scatter_nbrs(*u*) do $(D_{(u,v)}, \Delta a) \leftarrow \operatorname{scatter}(D_u, D_{(u,v)}, D_v)$ if a_v and Δa are not Empty then $a_v \leftarrow \operatorname{sum}(a_v, \Delta a)$ else $a_v \leftarrow \operatorname{Empty}$ end

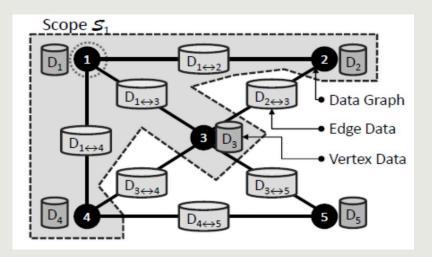
- Maintains cached accumulator at each vertex to avoid redundant gather operations.
 - Later results will show the advantage of keeping this, significant speedup
- The scatter phase can return Δa which gets added to the neighbor's accumulator, incrementally updating it.

Synchronous and Asynchronous Execution Model



Pregel: Synchronous Model

- Synchronous schedules like Pregel. Executes GAS and commits at end.
- Asynchronous schedules like GraphLab. Changes occur instantaneously during *apply* and *scatter*.



GraphLab: Asynchronous Model

Example Implementation

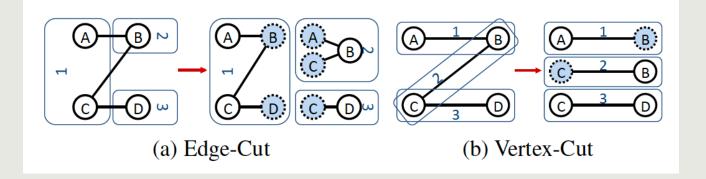
PageRank

```
// gather_nbrs: IN_NBRS
gather (D_u, D_{(u,v)}, D_v):
   return D_v.rank / #outNbrs(v)
sum(a, b): return a + b
apply (D_u, \text{ acc}) :
   rnew = 0.15 + 0.85 * acc
  D_u.delta = (rnew - D_u.rank)/
             #outNbrs(u)
  D_{\mu}.rank = rnew
// scatter_nbrs: OUT_NBRS
scatter (D_u, D_{(u,v)}, D_v):
   if (|D_u.delta| > \varepsilon) Activate (v)
   return delta
```

Powergraph on Distributed Systems

Edge vs. Vertex Partitioning

- PowerGraph uses <u>vertex-cutting!</u>
- Increases replication of vertices, lowers copies of edges.
- Think about power distributed graphs, and how much data replicating edges would cost



Random vs. Greedy Partitioning

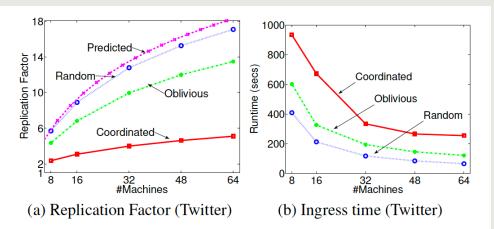
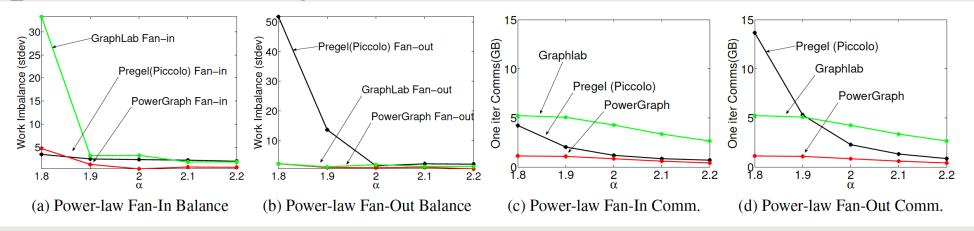


Figure 8: (**a**,**b**) Replication factor and runtime of graph ingress for the Twitter follower network as a function of the number of machines for random, oblivious, and coordinated vertex-cuts.

- *Random:* Randomize where you put vertices
- *Greedy:* do a minimization problem of expected number of replications
 - <u>Coordinated:</u> maintains a shared table
 - <u>Oblivious:</u> maintains a local model of data

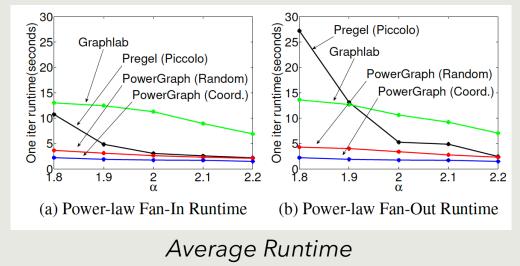
How does PowerGraph actually perform?

Finding: PowerGraph maintains constant behavior despite skewness factor α

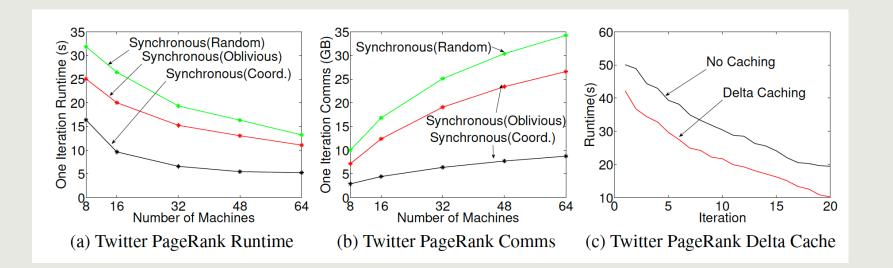


Std. dev. of worker computation time

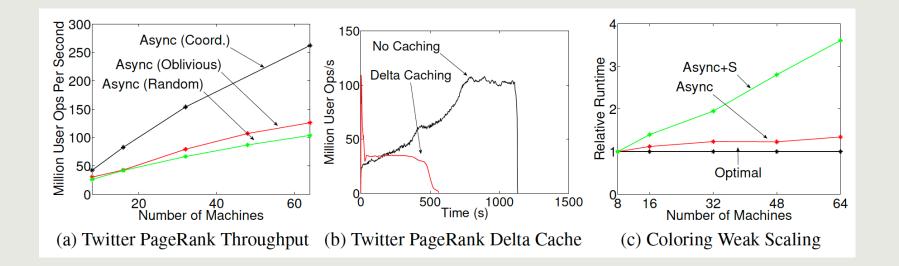
Average info communicated



Finding: PowerGraph's synchronous engine exhibits(a) good strong scalability(b) reduces memory overhead with greedy partitioning(c) saves time using delta caching



Finding: PowerGraph's asynchronous engine exhibits(a) nearly linear throughput increase with machine(b) reduces operations with caching(c) nearly linear weak-scaling



"Performance" of PowerGraph against competing software

PageRank	Runtime	V	7	E	System
Hadoop [22]	198s			1.1B	50x8
Spark [37]	97.4s	40M		1.5B	50x2
Twister [15]	36s	50M		1.4B	64x4
PowerGraph (Sync)	3.6s	40M		1.5B	64x8
Triangle Count	Runtime	V		E	System
Hadoop [36]	423m	40M		1.4B	1636x?
PowerGraph (Sync)	1.5m	40M		1.4B	64x16
LDA	Tok/sec		Topics		System
Smola et al. [34]	150M		1000		100x8
PowerGraph (Async)	110M		1000		64x16

My critique

Cons:

- Comparison against other work could be better
- Use of consistent metrics in evaluation
- Consistent comparison between sync and async and async+serialization
- More careful mathematical text

Pros:

- Great motivating concept
- Very good theoretical basis for the results
- Melds two existing models together and then extends to create
- Was successful enough to get acquired by Apple

