
PowerGraph: 
Distributed 
Graph-Parallel 
Computation on 
Natural Graphs
Authors: J. Gonzalez, Y. Low, H. 
Gu, D. Bickson, C. Guestrin

OSDI’12

Presenter: Grant Wilkins (gfw27)



Situating 
this Study

• Large graph processing becoming more 
pressing due to growing social media 
networks, NLP, 

• Pregel and GraphLab existing software for 
large-scale graph processing

• The problem(s): Power-law degree 
distribution



Power-Law 
Distribution
Definition: Probability that vertex has degree d is 
𝑃𝑃 𝑑𝑑 = 𝑑𝑑−𝛼𝛼 where 𝛼𝛼 is skewness factor to control 
distribution.

Problem: When a few nodes have a lot of 
connections, they bottleneck typical systems.



What this study aims to address?
• Work Balance

• Power-law throws off symmetric graph computation
• Partitioning

• Hard to split up a natural graph
• Communication

• Difficult to update skewed graphs
• Storage

• High-degree vertices carry lots of memory
• Computation

• Individual vertex computation doesn’t scale



Design of Powergraph



Gather, 
Apply, Scatter 
(GAS)

• 𝐷𝐷𝑢𝑢,𝐷𝐷𝑣𝑣: vertex data (e.g. metadata & computation 
state)

• 𝐷𝐷(𝑢𝑢,𝑣𝑣): edge data between 𝑢𝑢, 𝑣𝑣

• Roughly same as GraphLab’s implementation, but 
with parallel gather 

• Very similar to Map-Reduce



Delta Caching

• Maintains cached accumulator at 
each vertex to avoid redundant 
gather operations. 
• Later results will show the 

advantage of keeping this, 
significant speedup

• The scatter phase can return Δ𝑎𝑎
which gets added to the 
neighbor's accumulator, 
incrementally updating it.



Synchronous and 
Asynchronous 
Execution Model

• Synchronous schedules like Pregel. 
Executes GAS and commits at end.

• Asynchronous schedules like 
GraphLab. Changes occur 
instantaneously during apply and 
scatter.

Pregel: Synchronous Model GraphLab: Asynchronous Model



Example Implementation



Powergraph on Distributed 
Systems



Edge vs. 
Vertex 
Partitioning

• PowerGraph uses vertex-cutting! 

• Increases replication of vertices, 
lowers copies of edges.

• Think about power distributed 
graphs, and how much data 
replicating edges would cost



Random vs. 
Greedy 
Partitioning • Random: Randomize where you 

put vertices
• Greedy: do a minimization 

problem of expected number of 
replications

• Coordinated: maintains a 
shared table 

• Oblivious: maintains a local 
model of data



How does PowerGraph actually 
perform?



Finding: PowerGraph maintains constant behavior 
despite skewness factor 𝛼𝛼

Std. dev. of worker computation time Average info communicated

Average Runtime



Finding: PowerGraph’s synchronous engine exhibits 
(a) good strong scalability 
(b) reduces memory overhead with greedy partitioning 
(c) saves time using delta caching



Finding: PowerGraph’s asynchronous engine exhibits 
(a) nearly linear throughput increase with machine
(b) reduces operations with caching
(c) nearly linear weak-scaling



“Performance” of 
PowerGraph
against competing 
software



My critique
Cons:
• Comparison against other work 

could be better
• Use of consistent metrics in 

evaluation
• Consistent comparison 

between sync and async and 
async+serialization

• More careful mathematical text

Pros:
• Great motivating concept
• Very good theoretical basis for 

the results
• Melds two existing models 

together and then extends to 
create

• Was successful enough to get 
acquired by Apple



Questions?
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