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Situating
this Study

Graphlab

* Large graph processing becoming more

pressing due to growing social media
networks, NLP

* Pregel and GraphLab existing software for

large-scale graph processing

* The problem(s): Power-law degree

distribution

Pregel

oogle




Power-Law
Distribution

Definition: Probability that vertex has degree d is
P(d) = d~% where « is skewness factor to control
distribution.

Problem: When a few nodes have a lot of
connections, they bottleneck typical systems.
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What this study aims to address?

«  Work Balance
e Power-law throws off symmetric graph computation
* Partitioning
« Hard to split up a natural graph
« Communication
« Difficult to update skewed graphs
* Storage
« High-degree vertices carry lots of memory
« Computation
* Individual vertex computation doesn’t scale




Design of Powergraph




Gather,
Apply, Scatter

(GAS)

* D, D,: vertex data (e.g. metadata & computation

state)

* Dy): edge data between u, v

* Roughly same as GraphlLab’s implementation, but

with parallel gather

* Very similar to Map-Reduce

interface GASVertexProgram(u) {

// Run on gather_nbrs (u)

gather (D,, L%HW), D,) — Accum

sum (Accum left, Accum right) — Accum
apply (D, , Accum) — D"

// Run on scatter_ nbrs (u)

scatter(DﬂeW,D( ),DV) — (Dnef, Accum)

u,v (u,




Delta Caching

Algorithm| 1: Vertex-Program Execution Semantics

Input: Center vertex u

if cached accumulator a, is empty then
foreach neighbor v in gather_nbrs(u) do

| a, < sum(a,, gather(D,, D(w)* D)))

end

end

Dy < apply(Dy, ay)

foreach neighbor v scatter _nbrs(u) do
(D(ujv)ﬁAa) 5 SC&ttCI’(Du, D(LtTV)’ DV)

if a, and Aa are not Empty then a, < sum(a,, Aa)

else a, < Empty
end

Maintains cached accumulator at
each vertex to avoid redundant
gather operations.

« Later results will show the
advantage of keeping this,
significant speedup

The scatter phase can return Aa
which gets added to the
neighbor's accumulator,
incrementally updating it.




Synchronous and
Asynchronous
Execution Model

; .
compute communicate

Pregel: Synchronous Model

 Synchronous schedules like Pregel.

Executes GAS and commits at end.

» Asynchronous schedules like

GraphlLab. Changes occur
instantaneously during apply and
scatter.

GraphlLab: Asynchronous Model




Example Implementation

PageRank

// gather_nbrs: IN_NBRS
gather (D,, l%mﬂ, D,) :
return D,.rank / #outNbrs (v)
sum(a, b): return a + b
apply (D,, acc):
rnew = 0.15 + 0.85 % acc

D,.delta = (rnew - D,.rank)/
#outNbrs (u)
D, .rank = rnew

// scatter_nbrs: OUT_NBRS

scatter(lh,[%mﬂ,lh):
if(|D,.delta|>€e) Activate (v)
return delta




Powergraph on Distributed
Systems




* PowerGraph uses vertex-cutting!

* Increases replication of vertices,

Edge VS. lowers copies of edges.

* Think about power distributed

Vertex graphs, and how much data
o o o replicating edges would cost
Partitioning
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Random vs.
Greedy

o, o . * Random: Randomize where you
Partitioning put vertices

* Greedy: do a minimization
problem of expected number of
replications

« Coordinated: maintains a
shared table
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machines for random, oblivious, and coordinated vertex-cuts.




How does PowerGraph actually
perform?




Finding: PowerGraph maintains constant behavior
despite skewness factor o

50 ‘ ] 15 15
3ot . ]
5 |\ —GraphlabFan-in 8 40 \——Pregel(Piccolo) Fan-out ) ) _—Pregel (Piccolo)
D 250 z 0] Graphlab S
5'20_ Pregel(Piccolo) Fan-in | & 210 210 Graphlab
§ % 30 GraphLab Fan-out g Pregel (Piccolo) E
ERE PowerGraph Fan-in { @ o o PowerGraph
o 8 onl | PowerGraph =
E E20 PowerGraph Fan-ouf £ 5 2 5
<10} = = 5 =
o o c c
Z g | 210 1 O o}
1\ — 4 - | * ‘ : - . , : :
1.8 1.9 2 2.1 2.2 1.8 1.9 2 2.1 2.2 P8 1.9 2 2.1 2.2 i 1.9 2 2.1 2.2
o o (¢ o
(a) Power-law Fan-In Balance (b) Power-law Fan-Out Balance (¢c) Power-law Fan-In Comm. (d) Power-law Fan-Out Comm.
Std. dev. of worker computation time Average info communicated

w
o
W
o

Pregel (Piccolo)
Graphlab

Sl

Graphlab
Pregel (Piccolo)

NN
e

NN
S &

PowerGraph (Random)
PowerGraph (Coord.)

PowerGraph (Random)
PowerGraph (Coord.)

One iter runtime(seconds)
[6)]

One iter runtime(seconds)
(6)]

108 100
5t 5t
4
Os 1.9 2 21 22 s 1.9 2 21 22
o o

(a) Power-law Fan-In Runtime (b) Power-law Fan-Out Runtime

Average Runtime




Finding: PowerGraph’s synchronous engine exhibits
(@) good strong scalability

(b) reduces memory overhead with greedy partitioning
(c) saves time using delta caching
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Finding: PowerGraph’s asynchronous engine exhibits
(@) nearly linear throughput increase with machine
(b) reduces operations with caching

(c) nearly linear weak-scaling
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“Performance” of
PowerGraph
against competing
software

PageRank Runtime | |[V| | |E| | System
Hadoop [22] 198s — 1.1B | 50x8
Spark [37] 97.4s 40M | 1.5B | 50x2
Twister [15] 36s S50M| 1.4B| 64x4
PowerGraph (Sync) | 3.6s 40M | 1.5B| 64x8
Triangle Count Runtime | |V| | |E| | System
Hadoop [36] 423m 40M | 1.4B | 1636x?
PowerGraph (Sync) | 1.5m 40M | 1.4B | 64x16
LDA Tok/sec Topics System
Smola et al. [34] 150M 1000 100x8
PowerGraph (Async) | 110M 1000 64x16




My critique

Cons:

« Comparison against other work
could be better

« Use of consistent metrics in
evaluation

» Consistent comparison
between sync and async and
async+serialization

* More careful mathematical text

Pros:

» Great motivating concept

 Very good theoretical basis for
the results

« Melds two existing models
together and then extends to
create

« Was successful enough to get
acquired by Apple




Questions?
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