
PowerGraph:
Distributed
Graph-Parallel
Computation on
Natural Graphs
Authors: J. Gonzalez, Y. Low, H.
Gu, D. Bickson, C. Guestrin

OSDI’12

Presenter: Grant Wilkins (gfw27)

Situating
this Study

• Large graph processing becoming more
pressing due to growing social media
networks, NLP,

• Pregel and GraphLab existing software for
large-scale graph processing

• The problem(s): Power-law degree
distribution

Power-Law
Distribution
Definition: Probability that vertex has degree d is
𝑃𝑃 𝑑𝑑 = 𝑑𝑑−𝛼𝛼 where 𝛼𝛼 is skewness factor to control
distribution.

Problem: When a few nodes have a lot of
connections, they bottleneck typical systems.

What this study aims to address?
• Work Balance

• Power-law throws off symmetric graph computation
• Partitioning

• Hard to split up a natural graph
• Communication

• Difficult to update skewed graphs
• Storage

• High-degree vertices carry lots of memory
• Computation

• Individual vertex computation doesn’t scale

Design of Powergraph

Gather,
Apply, Scatter
(GAS)

• 𝐷𝐷𝑢𝑢,𝐷𝐷𝑣𝑣: vertex data (e.g. metadata & computation
state)

• 𝐷𝐷(𝑢𝑢,𝑣𝑣): edge data between 𝑢𝑢, 𝑣𝑣

• Roughly same as GraphLab’s implementation, but
with parallel gather

• Very similar to Map-Reduce

Delta Caching

• Maintains cached accumulator at
each vertex to avoid redundant
gather operations.
• Later results will show the

advantage of keeping this,
significant speedup

• The scatter phase can return Δ𝑎𝑎
which gets added to the
neighbor's accumulator,
incrementally updating it.

Synchronous and
Asynchronous
Execution Model

• Synchronous schedules like Pregel.
Executes GAS and commits at end.

• Asynchronous schedules like
GraphLab. Changes occur
instantaneously during apply and
scatter.

Pregel: Synchronous Model GraphLab: Asynchronous Model

Example Implementation

Powergraph on Distributed
Systems

Edge vs.
Vertex
Partitioning

• PowerGraph uses vertex-cutting!

• Increases replication of vertices,
lowers copies of edges.

• Think about power distributed
graphs, and how much data
replicating edges would cost

Random vs.
Greedy
Partitioning • Random: Randomize where you

put vertices
• Greedy: do a minimization

problem of expected number of
replications

• Coordinated: maintains a
shared table

• Oblivious: maintains a local
model of data

How does PowerGraph actually
perform?

Finding: PowerGraph maintains constant behavior
despite skewness factor 𝛼𝛼

Std. dev. of worker computation time Average info communicated

Average Runtime

Finding: PowerGraph’s synchronous engine exhibits
(a) good strong scalability
(b) reduces memory overhead with greedy partitioning
(c) saves time using delta caching

Finding: PowerGraph’s asynchronous engine exhibits
(a) nearly linear throughput increase with machine
(b) reduces operations with caching
(c) nearly linear weak-scaling

“Performance” of
PowerGraph
against competing
software

My critique
Cons:
• Comparison against other work

could be better
• Use of consistent metrics in

evaluation
• Consistent comparison

between sync and async and
async+serialization

• More careful mathematical text

Pros:
• Great motivating concept
• Very good theoretical basis for

the results
• Melds two existing models

together and then extends to
create

• Was successful enough to get
acquired by Apple

Questions?

	PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs
	Situating this Study
	Power-Law Distribution��Definition: Probability that vertex has degree d is 𝑃 𝑑 = 𝑑 −𝛼 where 𝛼 is skewness factor to control distribution.����Problem: When a few nodes have a lot of connections, they bottleneck typical systems.
	Slide Number 4
	Design of Powergraph
	Gather, Apply, Scatter (GAS)
	Delta Caching
	Synchronous and Asynchronous Execution Model
	Example Implementation
	Powergraph on Distributed Systems
	Edge vs. Vertex Partitioning
	Random vs. Greedy Partitioning
	How does PowerGraph actually perform?
	Finding: PowerGraph maintains constant behavior despite skewness factor 𝛼
	Finding: PowerGraph’s synchronous engine exhibits �(a) good strong scalability �(b) reduces memory overhead with greedy partitioning �(c) saves time using delta caching
	Finding: PowerGraph’s asynchronous engine exhibits �(a) nearly linear throughput increase with machine�(b) reduces operations with caching�(c) nearly linear weak-scaling
	“Performance” of PowerGraph against competing software
	My critique
	Questions?

