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Summary

Lux

- Distributed Multi-GPU system
- Graph Processing

- Two Execution Models

- Load Balance Model

- Performance Model
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Background

Prior Work: Multi-CPU Systems eg Pregel, PowerGraph, Ligra
- Graph on CPU DRAM

Bottleneck of graph applications: Memory bandwidth

GPU better than CPUs
- Higher memory bandwidth
- Power efficiency
- Hardware parallelism
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Background
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Execution Model

Push Model Pull Model
- Optimizes algorithmic efficiency - Enables important GPU
- Benefits applications where a optimizations
small subset of vertices are - Benefits applications where
active over iterations most vertices are active over
iterations
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Execution Model

interface Program(V, E) {
void init(Vertex v, Vertex v°9);
void compute(Vertex v, Vertex udd,
Edge e);

bool update(Vertex v, Vertex v°¢);

}

Main difference:
- Pull model iteratively pulls potential updates from all in-neighbours
- Push model pushes updates to all out-neighbours, uses frontier queue
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Execution Model

Pull Model (vs Push Model)
Pros:

- Less synchronization required
- Enable GPU optimizations
- GPU can locally aggregate and cache certain updates in shared
memory
- Coalesced Memory Access

Cons:

- All vertices need to pull for updates in every iteration
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Execution Model
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Figure 19: Per iteration runtime on TW with 16 GPUs.
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How Lux uses the Memory Hierarchy

Larger
Zero-copy Memory for storing vertex properties

- Partially sharing
- Overlap data movements with work to hide latency
- Data transfers only happen between iterations

GPU Device Memory for actual computation

GPU Shared Memory for Caching, Aggregation, Storing data

processed cooperatively (Only in Pull!)
Higher
bandwidth
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How Lux uses the Memory Hierarchy
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How Lux uses the Memory Hierarchy

Coalesced Memory Access

- An important optimization by GPUs

- When multiple GPU threads issue memory references to consecutive
memory addresses

- GPU hardware automatically coalesce references into a range request
which is more efficiently handled
- Inload, compute and update phase

Edge Partitioning

- Assign vertices so each GPU contains consecutive vertices
- Store vertex properties in array layout in zero-copy memory
- Goal: Balance edges across partitions
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Load Balance Model

Start with Edge Partition
Dynamic Graph Re-partitioning Strategy

- Global phase and local phase

- Function that calculates amount of work for each vertex (initially
unknown and estimated)

- Update function at end of iteration

- Compute new partition and see if cost decrease is bigger than cost of
repartitioning
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Load Balance Model

[ Per-iteration Runtime (Lux Repartitioning) Graph Migration Time (Loca! Repartitioning)
B8 Per-iteration Runtime (Local Repartitioning) [ Lux Repartitioning Time
] Per-iteration Runtime (w/o Repartitioning) Local Repartitioning Time
[ Graph Migration Time (Lux Repartitioning)

500" R 0N TW with 1 node (16 GPUs) 7000PR N GS with 4 nodes (16 GPUs per node)
g a00} g 60
= = 5000
g 300¢ @ 4000
‘= 200} o 3000t
c c 2000}
035 | é’ 1000

¢ 1 2 3 4 5 6 0 1 2 3 4 5 6

Iterations Iterations
Figure 18: Performance comparison for different dynamic
repartitioning approaches. The horizontal line shows the
expected per-iteration run time with perfect load balancing.




Performance Model

Model performance of each execution mode by four steps

Load

Compute

Update

Inter-Node Transfer

BN~

Most of these proportional to amount of data / number of edges

Estimate performance for push vs pull and select faster execution mode

sis UNIVERSITY OF

" CAMBRIDGE



Evaluation and Performance

Single GPU

- Almost Matches (or outperforms) performance of other GPU graph
processing frameworks
- Overhead from loading data to and from zero copy memory
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Figure 15: Performance comparison on a single GPU (lower is better).
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Evaluation and Performance

Multi-GPU (vs Multi-CPU and other Multi-GPU)

- Outperforms most
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Figure 16: The execution time for different graph processing frameworks (lower is better).
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Drawbacks

GPUs less cost efficient when scaled
Inaccurate in estimating performance of push model
- Frontier queue resulting in load
imbalance
Overhead in data transfers and partitioning
- Masked by huge reduction in
computation time
Fault Tolerance (?)

Algorithms to Modify Graph
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Drawbacks

Table 3: The cost for a Lonestarb CPU and an XStream
GPU machine, as well as their cost efficiency. The cost
efficiency is calculated by dividing the runtime performance
(i.e., iterations per second) by machine prices.

K. | g o XStream | XStream XStrcam
(4GPUs) | (8GPUs) | (16GPUs)
Machine Prices (as of May 2017)

CPUs [4, 3] 15352 3446 3446 3446
DRAM [8] 12784 2552 2552 2552
GPUs [7] 0 20000 40000 80000

Total 28136 25998 45998 85998
Cost Efficiency (higher is better)
PR (TW) 0.20 0.84 0.64 0.45

CC (TW) 0.18 0.26 0.21 0.14
SSSP(TW) 0.14 0.25 0.20 0.10
BC(TW) 0.14 0.30 0.18 0.10
CF (NF) 0.85 1.07 0.68 0.58
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Questions?
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