
A Distributed Multi-GPU System for 
Fast Graph Processing
Zhihao Jia, Yongkee Kwon, Galen Shipman, Pat McCormick, Mattan Erez, 
Alex Aiken

Presented by Thomas Yuan



Summary

Lux
- Distributed Multi-GPU system
- Graph Processing
- Two Execution Models
- Load Balance Model
- Performance Model



Background

Prior Work: Multi-CPU Systems eg Pregel, PowerGraph, Ligra
- Graph on CPU DRAM

Bottleneck of graph applications: Memory bandwidth

GPU better than CPUs
- Higher memory bandwidth
- Power efficiency
- Hardware parallelism



Background



Execution Model

Push Model

- Optimizes algorithmic efficiency
- Benefits applications where a 

small subset of vertices are 
active over iterations

Pull Model

- Enables important GPU 
optimizations

- Benefits applications where 
most vertices are active over 
iterations



Execution Model

Main difference: 
- Pull model iteratively pulls potential updates from all in-neighbours
- Push model pushes updates to all out-neighbours, uses frontier queue



Execution Model

Pull Model (vs Push Model)

Pros:

- Less synchronization required
- Enable GPU optimizations 

- GPU can locally aggregate and cache certain updates in shared 
memory

- Coalesced Memory Access

Cons:

- All vertices need to pull for updates in every iteration



Execution Model



How Lux uses the Memory Hierarchy

Zero-copy Memory for storing vertex properties

- Partially sharing
- Overlap data movements with work to hide latency
- Data transfers only happen between iterations

GPU Device Memory for actual computation

GPU Shared Memory for Caching, Aggregation, Storing data 
processed cooperatively (Only in Pull!)

Larger

Higher 
bandwidth



How Lux uses the Memory Hierarchy



How Lux uses the Memory Hierarchy

Coalesced Memory Access

- An important optimization by GPUs
- When multiple GPU threads issue memory references to consecutive 

memory addresses
- GPU hardware automatically coalesce references into a range request 

which is more efficiently handled
- In load, compute and update phase

Edge Partitioning

- Assign vertices so each GPU contains consecutive vertices
- Store vertex properties in array layout in zero-copy memory
- Goal: Balance edges across partitions



Load Balance Model

Start with Edge Partition

Dynamic Graph Re-partitioning Strategy

- Global phase and local phase
- Function that calculates amount of work for each vertex (initially 

unknown and estimated)
- Update function at end of iteration
- Compute new partition and see if cost decrease is bigger than cost of 

repartitioning



Load Balance Model



Performance Model

Model performance of each execution mode by four steps

1. Load
2. Compute
3. Update
4. Inter-Node Transfer

Most of these proportional to amount of data / number of edges

Estimate performance for push vs pull and select faster execution mode



Evaluation and Performance

Single GPU

- Almost Matches (or outperforms) performance of other GPU graph 
processing frameworks

- Overhead from loading data to and from zero copy memory



Evaluation and Performance

Multi-GPU (vs Multi-CPU and other Multi-GPU)

- Outperforms most 



Evaluation and Performance

Multi-GPU (vs Multi-CPU and other Multi-GPU)

- Outperforms most 



Drawbacks

GPUs less cost efficient when scaled

Inaccurate in estimating performance of push model

- Frontier queue resulting in load

imbalance

Overhead in data transfers and partitioning

- Masked by huge reduction in

computation time

Fault Tolerance (?)

Algorithms to Modify Graph



Drawbacks



Questions?


