
Green-Marl: A Domain-Specific 
Language for Easy and Efficient 
Graph Analysis

Oct 25th 2023
Wenxuan Li



Context & Motivation

● Context: large amount of graph data to be analysed and mined

● Challenges for efficient graph analysis on large-scale graph data:

○ Capacity: limited memory space

○ Performance: when run on large scale data

○ Implementation: difficult to implement correctly and efficiently

● Main focus: tight coupling between high-level graph analysis algorithm design and 

underlying hardware architecture



Overview

Green-Marl:

○ A high-level domain specific language

○ An associated compiler for producing optimized and parallelized low-level 

implementation

=> for both performance (optimization) and implementation (decoupling)



Language Design: Domain-specific Syntaxes

● Data-Types:

○ Graph

○ Nodes

○ Node_Prop

● Traversal:

○ InBFS (BFS)

○ InRBFS (reverse-order BFS)

○ UpNbrs and DownNbrs



Language Design: Parallelism

● Implicit Parallelism

○ Group Assignment: `G.BC=0`

● (Explicit) Parallel Execution Region

○ `Foreach`

○ following fork-join style



Compiler



Compiler: Loop Fusion



Compiler: Set-Graph Loop Fusion



Compiler: Code Generation and Architecture Portability

Compiler emits out target code using code-generation templates

○ Example: `Foreach` implementation with backend OpenMP

Allows replacement of backends for code-generations, e.g. CUDA



Evaluation: Productivity

● Measured by Line of Codes (LoC)

● Compared with implementations in 

existing graph analysis libraries



Evaluation: Performance Gain

● Measured by Speed-up with number of threads 

growing

● Compared with implementations in SNAP 

library (Bader et al. 2008)

● Ablation study by disabling some optimizations 

of the compiler (e.g. FlippingEdge)

(Evaluated on randomly synthesized graphs with 32 million 

nodes and 256 million edges)



Limitations

● No backends supported for distributed environments when the paper was released

○ Later works introduced Pregel (Hong et al. 2014), CUDA (Shashidhar and Nasre. 

2017) and MPI (Rajendran and Nandivada 2020)

● No baseline provided for evaluating speed-ups on PageRank and Kosaraju’s algorithm

● Still extra cost for mastering this language



Reference

● Bader et al. 2008. SNAP, Small-world Network Analysis and Partitioning: An 

open-source parallel graph framework for the exploration of large-scale 

networks

● Hong et al. 2014. Simplifying Scalable Graph Processing with a Domain-Specific 

Language

● Shashidhar and Nasre 2017. LightHouse: An Automatic Code Generator for 

Graph Algorithms on GPUs

● Rajendran and Nandivada 2020. DisGCo: A Compiler for Distributed Graph 

Analytics



Thank you


