

Rlgraph: Flexible Computation Graphs for Deep Reinforcement learning

MICHAEL SCHAARSCHMIDT, SVEN MIKA, KAI FRICKE, EIKO YONEKI

RLgraph

- Framework that designs and implements RL computation
- Metagraph outlining high-level data flow, followed by execution

API, Component configuration	Prebuilt models, inference
RLgraph component graph	Model design, dataflow composition
TensorFlow PyTorch	Local backends variables/operations
Distributed TF Horovod Ray	Distributed execution engine
Hardware: CPU, GPU, TPU, FPGAs	Execution, orchestration

Figure 1. RLgraph stack for using and designing RL algorithms.

Reinforcement Learning

- ML technique that interacts with environment to make decisions
- Expanded use in gaming, robots, 3D scene simulators

RL Execution Difficulties

- Frequent problem environment interaction
- Highly varied states, resources, models

Novelty

- Novel meta-graph that generalizes dataflow to high level
- Claims to be "the first common interface to tensorflow and pytorch"
 - Rlib
 - Distributed Tensorforce
- Works on static and define-by-run graphs
- Updated systems since
 - Rlib Flow
 - MSRL

Rlgraph Creation

- Component composition phase
- Assembly phase
- Graph compilation/building phase

Figure 2. Example memory component with three API methods.

•

Figure 4. RLgraph execution stack.

Results

- Tested on tensorflow and pytorch
- Low build overhead
- Multiple GPU success

(a) Single worker throughput. (b) Training times for *Pong*.

Figure 7. Single task throughput and learning comparison.

Figure 6. Distributed sample throughput on Pong.

RLgraph Solution

- Logical component composition separation any distributed execution paradigm
- No restrictions on execution supports static and define-by-run backend
- High level abstractions
 Fast development cycles
- Individually built and tested components
 Incremental building and testing

Figure 11. TensorBoard visualization of DeepMind's IMPALA learner (left).

RLgraph Impact & Future Work

- Pluggable
- Open source
- RL use cases only increasing

Manage			
Acknowledgement	Length 2 Length 3 (Final Answer)	Hint	
Encouragement	Length 1	Sample Questions	
Guided Prompt Step 1 (Height) Hint Step 2 (Width) Hint	+ New Hint	How to get started? How to measure length? ADD QUESTION	
Step 3 (Length) Hint		Answer You can move your mouse close to the box to turn it into a chocolate!	
Step 4 (Volume) Hint			
Step 5 (Weight) Hint Step 6 (Comparison) Hint		Question History	
+ New Step		faith_ann_Jay 3 months ago HOW MANY CHOCOLATES FIT ALONG THE LENGTH?	
		james_li 3 months ago do you have a idea?	
		liliana_cienfuegos 3 months ago What is the hint?	
		MaxXia 3 months ago Can you wait for me Silly?	

Fig. A1: Interface for teachers to write hints and prompts.

Works Cited

- Schaarschmidt, M., Mika, S., Fricke, K., & Yoneki, E. (2018). RLgraph: Flexible Computation Graphs for Deep Reinforcement Learning. *CoRR*, *abs/1810.09028*. Retrieved from <u>http://arxiv.org/abs/1810.09028</u>
- Liang, E., Liaw, R., Nishihara, R., Moritz, P., Fox, R., Gonzalez, J., ... Stoica, I. (2017). Ray RLLib: A Composable and Scalable Reinforcement Learning Library. *CoRR*, *abs/1712.09381*. Retrieved from <u>http://arxiv.org/abs/1712.09381</u>
- Liang, E., Wu, Z., Luo, M., Mika, S., & Stoica, I. (2020). Distributed Reinforcement Learning is a Dataflow Problem. *CoRR*, *abs/2011.12719*. Retrieved from <u>https://arxiv.org/abs/2011.12719</u>
- Zhu, H., Zhao, B., Chen, G., Chen, W., Chen, Y., Shi, L., ... Chen, L. (2022). MSRL: Distributed Reinforcement Learning with Dataflow Fragments. *arXiv* [*Cs.LG*]. Retrieved from http://arxiv.org/abs/2210.00882