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ABSTRACT
Tensor graph superoptimisation systems perform a sequence of subgraph substitution to neural networks, to find
the optimal computation graph structure. Such a graph transformation process naturally falls into the framework
of sequential decision-making, and existing systems typically employ a greedy search approach, which cannot
explore the whole search space as it cannot tolerate a temporary loss of performance. In this paper, we address
the tensor graph superoptimisation problem by exploring an alternative search approach, reinforcement learning
(RL). Our proposed approach, X-RLflow, can learn to perform neural network dataflow graph rewriting, which
substitutes a subgraph one at a time. X-RLflow is based on a model-free RL agent that uses a graph neural network
(GNN) to encode the target computation graph and outputs a transformed computation graph iteratively. We show
that our approach can outperform state-of-the-art superoptimisation systems over a range of deep learning models
and achieve by up to 40% on those that are based on transformer-style architectures.

1 INTRODUCTION

Recent modern software has key components that are un-
derpinned by machine learning models, specifically, deep
neural networks (DNNs). Over the past decade, there has
been a focus on developing frameworks that provide tools
using which we can design, train and evaluate these deep
learning models.

A common internal representation for neural networks in-
side deep learning frameworks is that of a computation
graph; a directed acyclic graph where nodes represent a spe-
cific computation and edges the paths where data is trans-
ferred. With the graph representation, frameworks such as
TensorFlow (Abadi et al., 2015; 2016) and PyTorch (Paszke
et al., 2019) apply optimisations to reduce computation re-
sources during inference.

Currently, the majority of graph-level optimisations in deep
learning frameworks are performed using manually defined
heuristics. For example. TensorFlow, TensorRT (NVIDIA,
2017), and TVM (Chen et al., 2018) perform fusion to a
computation graph by using rule-based strategies. While
such heuristics apply to current architectures, as network de-
sign is consistently evolving, new rules are being constantly
discovered and managing heuristics quickly becomes un-
wieldy.
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To mitigate this problem, recent work, namely TASO (Jia
et al., 2019a), has shown an automatic cost-based search
can replace heuristics to perform tensor graph rewriting.
TASO first generates a set of rewrite rules by enumerating
operators and then applies the generated rewrite rules to
tensor programs via a backtracking search. However, such
a backtracking search approach may not fully explore the
potential search space due to the lack of planning in cost-
based optimisation. As a step towards resolving the planning
issue, this work explores the use of reinforcement learning
(RL). RL is an area of machine learning in which an agent
learns to act optimally, given a state and a suitable reward
function, through interactions with an environment.

In this paper, we introduce X-RLflow, a tensor graph su-
peroptimiser that uses Reinforcement Learning (RL) for
automating tensor graph transformation. RL is known to be
a better search methodology than a backtracking search for
its planning for long-term reward, and thus it is more likely
to discover the globally optimal tensor graph structure.

Applying RL to the tensor graph superoptimisation domain
requires non-trivial modification because it takes the target
computation graph as input and outputs a better candidate
that is transformed by rewrite rules. As multiple rewrite
rules are applicable to every iteration, choosing the best
one is difficult because it also determines how the tensor
graph can be transformed in subsequent iterations. As a
result, the agent must learn to act optimally at each iteration,
making the decision that is not only good for the current
iteration but also good for the long term. Specifically, the
current computation graph and all potential substitution
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candidates are encoded via a graph neural network (GNN)
to a representation and the graph representation is later fed
into a policy network and a value network respectively to
produce the action probability and value estimate, as in the
standard actor-critic framework (Mnih et al., 2016). This
process is performed iteratively until no rewrite rules are
applied or the agent outputs a No-Op action, which then
terminates the tensor graph superoptimisation process. The
final optimised graph runs end-to-end inference to measure
its inference latency.

The use of RL for tensor graph superoptimisation also en-
ables using end-to-end inference latency as the feedback
signal. We find that the results from cost modelling can
deviate from the end-to-end inference latency by up to 24%,
and thus using cost modelling as the feedback signal to
guide the transformation process may lead to sub-optimal
results. On the other hand, running end-to-end inference
causes significant measurement overhead, but the overhead
can be amortised by evaluating sparsely. RL by design can
work well in a sparse or delayed reward scenario, and it can
still learn to maximise the long-term reward.

We also find that X-RLflow offers the ability to generalise.
This is because the policy of RL is parametrised by a neu-
ral network, and it can be reused for performing inference
once trained. We show that X-RLflow can generalise to
various tensor shapes after it is trained in a static tensor
shape environment. X-RLflow is available as open source 1.

To summarise, our contributions are:

• We design an RL agent and environment for automati-
cally selecting a sequence of subgraph transformation.

• Our approach works well for a wide range of
deep learning models and is especially powerful for
transformer-style architectures demonstrated by out-
performing state-of-the-art methods by up to 40%.

• We provide a detailed discussion and analysis of our
solution as well as a comparison to the state-of-the-art
methods in published literature.

• This work, to the best of our knowledge, is the first that
has applied reinforcement learning in the tensor graph
structure superoptimisation domain.

2 BACKGROUND AND MOTIVATION

2.1 Computation graphs for neural networks

To enable performance optimisation for DNNs, deep
learning frameworks and compilers represent DNNs as
dataflow/computation/tensor graphs, where tensor opera-
tions become nodes, and tensors are edges. Figure 1 shows
how a dense linear layer, y = ReLU(w · x + b), can be

1https://github.com/ucamrl/xrlflow.git

Figure 1. The graphical representation of a dense linear layer,
where tensor operators are nodes and the directed edges show
the flow of tensors through the graph.

represented as a computation graph. The terms dataflow
graph, computation graph and tensor graph are used inter-
changeably in deep learning frameworks.

2.2 Tensor graph structure superoptimisation
systems

With the graphical intermediate representation (IR), ten-
sor graph superoptimisation systems attempt to perform
subgraph substitution, aiming to reduce the end-to-end in-
ference latency of target DNNs.

2.2.1 Existing systems

TASO (Jia et al., 2019a) is the first system dedicated to
tensor graph structure superoptimisation. It first generates
a set of rewrite rules by enumerating a list of pre-defined
operators and then performs optimisation by substituting the
subgraph of the target DNN. During the optimisation phase,
TASO uses a cost model to rank all candidates and greedily
chooses the best candidate to proceed to the next iteration.

PET (Wang et al., 2021) further builds on TASO and ex-
plores partially equivalent subgraph transformation. The
rewrite rules developed in TASO only consider fully equiva-
lent subgraph substitution, and PET relaxes this assumption
by allowing non-equivalent substitution. Correction kernels
are automatically generated to ensure end-to-end equiva-
lency after the substitution.

Tensat (Yang et al., 2021) uses the same superoptimisation
systems as TASO, but replaces TASO’s optimiser with an
equality saturation (Tate et al., 2011a) based optimiser. It
uses the E-graph data structure to represent many potential
graph IRs simultaneously and then extracts the optimal IR
from the E-graph.

2.2.2 Limitations

Existing systems have employed different approaches to
find the optimal tensor graph structure, but each comes with
its limitations.

TASO’s substitution engine finds the best candidate at each
iteration of the transformation, but as the globally optimal
tensor graph structure may not be the best option at each
iteration, TASO is likely to miss out on the globally optimal

https://github.com/ucamrl/xrlflow.git
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Table 1. Discrepancy between TASO’s cost model estimates and
TASO’s end-to-end inference latency on some unoptimised DNNs.
E2E stands for end-to-end inference latency. Time is measured in
milliseconds.

DNNS COST MODEL E2E DIFF (%)

DALL-E 1.8269 1.7324 5.2%
INCEPTIONV3 8.3650 9.2098 10.1%
BERT 1.0453 1.1264 7.8%
SQUEEZENET 1.3082 1.4006 7.1%
RESNEXT-50 6.1545 7.6498 24%
T-T 2.4828 2.7281 9.9%

tensor graph. Moreover, the performance of candidates is
evaluated via the cost model, which assumes the summation
of individual operator runtime is the same as the end-to-
end inference latency. However as shown in Table 1, the
discrepancy between the measurement of the cost model
and the actual end-to-end inference latency can be up to
24%. This indicates the best candidate ranked by the cost
model may not be the best choice for actual deployment.

PET performs substitution by considering partially equiv-
alent transformation. However, it adopts the same cost
modelling principle as TASO, and therefore it suffers from
the same cost modelling problem. PET does not provide
an end-to-end inference interface in its artefact evaluation,
so it is impossible to measure the discrepancy in this case.
We also find that PET ignores all element-wise operators’
runtime, which may exacerbate the cost modelling problem.

We further compare PET and TASO on two similar DNNs,
but their performances are very different. As shown in Table
2, PET outperforms TASO in ResNet-18 but falls short in
ResNext-50. We hypothesise this result is because PET’s
partially equivalent transformation is very sensitive to the
shape of operators. Choosing the right operator shapes may
bring significant improvement to partially equivalent trans-
formation, and PET’s paper also mentions a larger batch
size offers more optimisation opportunities. However, under-
standing when partially equivalent transformation performs
well is beyond the scope of this paper, and as a result, we
will focus on TASO in this work.

Table 2. Comparison of the optimised graph inference latency be-
tween PET and TASO in ResNet-18 and ResNext-50. Time is
measured in milliseconds.

ResNet-18 ResNext-50
PET 1.9619 10.6694

TASO 2.5534 6.6453

Tensat employs equality saturation (Tate et al., 2011b),
which leverages the E-graph data structure to compactly
represent many potential tensor graphs at the same time.
Although in theory, a saturated E-graph can represent all

possible IRs, in reality, the E-graph is never saturated due
to several reasons. First, a saturated E-graph can be too
large to fit into memory, and therefore the E-graph is usually
upper-limited by 10000 nodes. Second, a large E-graph
takes a long time to extract the optimal IR, and extracting
IRs from a very large E-graph is non-trivial. As a result,
Tensat’s E-graph is not saturated and it cannot guarantee
that its optimised tensor graph structure is optimal.

2.3 Reinforcement learning

2.3.1 Reinforcement learning basics

We propose to use Reinforcement learning (RL) to tackle
the tensor graph structure superoptimisation problem. RL
aims to compute a control policy such that an agent can
maximise its cumulative reward from the environment. The
agent will learn to discover the optimal strategy via a single
reward signal.

Formally, RL is a class of learning problems that can be
framed as a Markov decision process (MDP) (Bellman,
1957); they are represented as a 5-tuple 〈S,A,Pa,Ra, ρ0〉
where:

• S, is a finite set of valid states
• A, is a finite set of valid actions
• Pa, is the transition probability function that an action
a in state st leads to a state s′t+1

• Ra, is the reward function, it returns the reward from
the environment after taking an action a between state
st and s′t+1

• ρ0, is the starting state distribution

We aim to compute a policy, denoted by π, that when given
a state s ∈ S , returns an action a ∈ A with the optimisation
objective being to find a control policy π∗ that maximises
the expected reward from the environment as Equation (1).

π∗ = argmax
π

E[
∞∑
t=0

γtRt] (1)

Classic RL problems are formulated as MDPs in which we
have a finite state space. However, such methods quickly
become inefficient with large state spaces for applications
such as Atari (Mnih et al., 2015; Kaiser et al., 2020) and
Go (Silver et al., 2018). Therefore, we take advantage of
modern deep learning function approximators, such as neu-
ral networks, which makes learning the solutions far more
efficient in practice. We have seen many successful applica-
tions in a wide range of fields, for example, robotic control
tasks (OpenAI et al., 2019), data centre power management,
device placement (Addanki et al., 2019; Mirhoseini et al.,
2018), and playing both perfect and imperfect information
games to a super-human level (Silver et al., 2016; 2018).



X-RLflow: Graph Reinforcement Learning for Neural Network Subgraphs Transformation

2.3.2 Graph reinforcement learning

Applying RL to the tensor graph superoptimisation domain
cannot be accomplished by classic RL algorithms. This is
because computation graphs are naturally graph-like data
and have relationships that cannot be expressed in Euclidean
space. Fortunately, graph neural networks (GNNs) is pro-
posed to address learning for graph data, and we provide a
high-level overview of commonly used GNNs.

Graph Convolutional Networks (GCNs) (Kipf & Welling,
2016) is one of the simplest yet powerful GNNs, which up-
dates each node’s features by message passing with its neigh-
bouring nodes’ features. While GCN is effective at learning
graph data, it assumes equal weighting of neighbouring
nodes. Graph Attentional Networks (GATs) (Veličković
et al., 2018) is later proposed to address this problem, by
learning to assign weights to neighbour nodes. As a result,
GAT is more expressive and is adopted in this work as a
component of the system.

2.4 Motivation for RL

Our motivation for using RL in the tensor graph superopti-
misation domain comes from several aspects.

First, RL can tolerate short-term performance decrease to
maximise long-term rewards. This is important for tensor
graph superoptimisation because the optimised graph is
obtained by applying a sequence of subgraph substitution,
and the globally optimal tensor graph structure may not be
the best candidate at every iteration. As a greedy search
engine only considers the best candidate, it is likely to miss
out on the globally optimal solution. On the contrary, it has
been shown in literature (Mnih et al., 2015; Kaiser et al.,
2020), (Silver et al., 2018) that RL can learn to tolerate short-
term loss and maximise the long-term episodic reward.

Second, we want to bypass the cost modelling issue and
only use the end-to-end inference latency as the feedback
signal to choose among potential candidates. We believe
this is necessary for machine learning systems since there
are multiple IRs for DNNs during progressive lowering and
there is optimisation being done for each IR layer. As a
result, optimisation that takes place at a higher layer IR is
not aware of the optimisation in lower layer IRs. Therefore,
cost modelling at a specific layer is not sufficient to form a
good feedback signal.

Using end-to-end inference latency is challenging to equal-
ity saturation-based methods because extracting from the
E-graph needs per-node cost modelling, and for greedy
search-based methods, it brings significant overhead to rank
all candidates at each iteration. We find RL a good method-
ology because by design it can work in a sparse or delayed
reward scenario. In our design, we perform an end-to-end
inference every N iteration, where N is a hyper-parameter

and it controls the trade-off between the frequency of reward
signals and the measurement overhead. We argue that the
accuracy and measurement overhead trade-off widely exists
in performance optimisation and the use of RL enables the
controlling of this trade-off.

Finally, RL offers a generalisation ability. Deep learning
systems often assume statically known tensor shapes and
tensor graphs for optimisation, and if any of the two changes,
the optimisation must start from scratch. However, there is
a practical need of changing the tensor shapes. For example,
a language model may need to be compiled multiple times
independently because its input text length may vary and
so is its corresponding tensor shapes. By applying RL, it
should be able to generalise to various tensor shapes. This
is because by varying the tensor shape, the tensor graph
structure is still the same. Therefore, we only need to train
the RL agent once and let it generalise to various tensor
shapes of the target DNN.

There is recent work on model-based RL that offers better
generalisation ability. For example, the world model (Ha &
Schmidhuber, 2018b) learns the dynamics of the environ-
ment, such that the agent can be trained in a latent space.
The main benefit of the world model is sample efficiency
because the agent does not need to interact with the actual
environment. Moreover, the world model enables planning
before making decisions. Unfortunately, learning a world
model is difficult and an imperfect world model may deviate
from the actual environment too much, such that even if the
agent learns to act optimally in the world model, it fails to
achieve good performance in reality. As such, we focus on
model-free agents in this work.

GO (Zhou et al., 2020b) is a model-free agent that tries to
generalise RL to unseen tenor graph structures. To do this,
they train RL agents on multiple graphs and evaluate them
on held-out graphs. This is much more computationally
demanding, so we only focus on generalisation to tensor
shapes in this work.

3 X-RLFLOW

In this section, we introduce X-RLflow, a tensor graph super-
optimiser that uses RL for automatic subgraph substitutions.
X-RLflow encapsulates the tensor graph transformation pro-
cess as the environment transition, and thus RL can iter-
atively transform the computation graph. We provide a
detailed description of each component of X-RLflow in this
section.

3.1 Computation graphs

We use the same computation graph representation as in
TASO. That is, users can manually define the computa-
tion graph via TASO’s programming interface, or load
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pre-trained models to the system. The pre-trained mod-
els from existing tensor frameworks, such as TensorFlow
(Abadi et al., 2015; 2016), PyTorch (Paszke et al., 2019) and
MXNet (Chen et al., 2015), can be converted to a unified
ONNX format (Bai et al., 2019), which then can be parsed
to TASO’s computation graph representation. After the su-
peroptimisation, users can export the optimised graph back
to the ONNX format, and deploy it to different backends.

3.2 Graph rewrite rules

The tensor graph rewrite rules are generated by TASO’s
generator. Those rules are generated before the optimisation
phase, by enumerating a list of primitive operators up to
a constant, and they are serialised to a text file. At the
beginning of the optimisation phase, rewrite rules are de-
serialised from the text file and activated. There are in total
150 rewrite rules, and one example of a graph rewrite rule
is shown as per Figure 2.

Given a target DNN, a candidate will be generated by
pattern-matching a rewrite rule to the target computation
graph. At each iteration of the optimisation, there are typ-
ically multiple matching rules to multiple locations of the
target computation graph, and therefore multiple candidates
are generated. Those candidates are put into a cache, and X-
RLflow selects one candidate as the transformation applied
to the target DNN. More details about the selection process
are provided in the next section.

Figure 2. Example of a TASO’s rewrite rule. Applying this rule
means performing pattern matching to the target computation
graph and substituting the source graph with the target graph. Note
that there may be multiple matches in the target computation graph,
in which case applying these rules generates multiple transformed
candidates.

3.3 Reinforcement learning formulation

3.3.1 System environment

We encapsulate the tensor graph transformation process as
the environment transition in the standard RL formulation.
There exists an open-source environment implementation
that provides standardised APIs for RL agents, such as the
OpenAI Gym (Brockman et al., 2016), in which users can

extend and write their environment transition logic. In this
work, we design an environment that follows the OpenAI
Gym API standard stepping an environment, that is, we
have a step() function that hides the complexity of the
graph transformation process and exposes a unified API to
RL agents, and a reset() function that resets the transfor-
mation process back to the initial stage. Those are essential
functions for the environmental transition. Note that this en-
vironment is re-usable for diverse and future RL algorithms.

Figure 3. Interaction between components of X-RLflow.

We made use of the work by Jia et al. (Jia et al., 2019a)
who provide an open-source version of TASO as part of the
backend of the environment, where the rewrite rules pattern
matching and tensor graph transformation takes place. At
each iteration of the environmental transition, the environ-
ment takes as input a computation graph and applies TASO’s
rewrite rules to all possible locations of the graph via pat-
tern matching, which generates a list of potential candidates.
Those potential candidates become the observation for the
RL agent.

3.3.2 State-Action space

The environment generates a list of transformed candidates
at each iteration of the optimisation, and the agent makes an
action, which is mapped to the index of a potential candidate,
indicating the choice of the agent. The selected candidate
becomes the graph for the next iteration. This process is
repeated until there are no more available candidates, or
the agent outputs a No-Op to indicate an earlier termina-
tion. The termination indicates the end of the tensor graph
transformation process.

To enable decision-making at each iteration, the computa-
tion graph and its potential candidates have to be embedded
as a state vector, which is done via a graph neural network
(GNN). Specifically, to create a graph input, we traverse the
target graphs and build node attributes and edge attributes
sequentially. For node, we maintain a table of operators
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and one-hot encode the index of the operator as node at-
tributes. There are around 40 different tensor operators in
total. For edges, we use the corresponding tensor shape as
its attributes. For example, the edge attribute [1, 3, 256, 256]
means its corresponding tensor has shape [1, 3, 256, 256].
For tensors whose rank is less than 4, zeros are padded
to leading dimensions. To stabilise training, we normalise
edge attributes via a constant M , whose value is detailed
in Appendix A. We also initialise the global attribute to 0
for all tensor graphs and update it through a learnable GNN
layer. After we build the graph input of the current compu-
tation graph and its potential candidates, we batch them into
a meta-graph, which is a comprehensive representation of
the current state.

One challenge for X-RLflow is the number of potential
candidates changes for every iteration. This is because as the
computation graph is transformed iteratively and becomes
more optimised, there are fewer applicable rewrite rules
and therefore fewer potential candidates are generated. As
a result, the action space of X-RLflow shrinks during the
transformation process. To overcome this issue, we pad
the action space to a large constant and use a mask vector
to indicate the actual candidates. Specifically, for each
meta-graph, we generate an associated boolean mask vector.
When the agent outputs the action probability vector, the
invalid action is masked out by the boolean vector. This is
known as invalid action masking (Huang & Ontañ ón, 2022),
which has been studied recently. It effectively turns the
gradients to zero if they correspond to an invalid action, and
thus resolves the changing action space issue. An alternative
way is to penalise the agent when it makes an invalid action
and terminates the episode. We find it slows down the
training and thus we employ the invalid action masking
method.

Figure 3 shows the architecture overview of X-RLflow. The
GNN is used to encode the meta-graph input and produce a
state representation z, and then, the state vector is fed into
a policy head and a value head, which output a categorical
distribution and a value estimate respectively. The policy
head and value head are both two layers of multi-layer per-
ceptrons (MLPs). The action sampled from the categorical
distribution is mapped to a candidate index, and the value
estimate is stored in a cache for computing the generalised
advantage estimate when updating the agent.

The GNN is critical in our system because it enables ap-
plied RL to the tensor graph superoptimisation domain and
therefore its details will be further described in section 3.4.

3.3.3 Reward function

Arguably the reward function is regarded as the most im-
portant part when designing RL based optimiser. Agents
will maximise their policy to get the maximum cumulative

reward of episodes, therefore our reward function should
encourage the agent to find the optimal tensor graph struc-
tures.

Since the optimal tensor graph structure is evaluated via its
end-to-end inference latency, the reward function should
reward the agent positively when an action decreases the
inference latency. To enable flexibility, the environment has
an interface where users can register their callback function
to compute the reward, and we also have implemented a
default reward function that works well in our empirical
evaluation.

rt =
RTt−1 −RTt

RT0
∗ 100 (2)

The default reward function firstly computes the inference
time difference between the last inference latency RTt−1
and the current inference latency RTt and then normalises
the difference with initial inference time RT0 of the DNN.
Intuitively, such a design encourages the RL agent to dis-
cover candidates that reduce end-to-end inference latency
compared to the current computation graph. The normalisa-
tion stabilises the training because the reward is calculated
as a percentage speedup and it will not introduce very large
positive or negative rewards. We find the default reward
function leads to good performance in practice. For invalid
action, we simply mask out its probability by assigning a
large negative number in the categorical distribution.

Note that end-to-end inference is run every N iteration for
the reason mentioned in section 2.4, meaning Equation 2
is used every N iteration. When the feedback signal is not
available, we simply use a small constant of 0.1 to reward
the agent for continuous exploration. We find that this
constant works well in our empirical evaluation, and it can
be customised by users via registering a callback function.

3.3.4 Learning algorithm

All learnable components in X-RLflow are trained in an
end-to-end fashion. To this end, we adopt the clip variant
from the PPO algorithm (Schulman et al., 2017). PPO is an
on-policy RL algorithm, meaning it first performs roll-outs
for several episodes and uses the collected data to perform
an update to its networks. This process is repeated until the
number of update round reaches a pre-defined constant.

Being a PPO RL agent, there are multiple available variants
of the objective function. The clip objective function chosen
for X-RLflow is:

Lclip = −EG{min(
πθ
πθk
·Aπθk , clip( πθ

πθk
, 1−ε, 1+ε)Aπθk )}

(3)

Where πθ is the current policy and πθk is the old policy.
Aπθk represents the generalised advantages computed given
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the samples generated from the old policy πθk , as in (Schul-
man et al., 2015). The clip objective essentially prevents the
policy network from being updated too much away from its
previous weights. To update the value estimates, we simply
compute the mean-square-error of the output from the value
head with the target value:

Lvf = EG{(Vθ(st)− Vtarget)2} (4)

The final objective is the summation of the two losses func-
tions and an entropy term:

J = Lclip + c1Lvf + c2Lentropy (5)

Where c1 and c2 are two small constants to weigh the value
loss and the entropy loss respectively. The entropy term is
calculated from the action probability πθk and is meant to
constrain the policy network update further.

This particular RL algorithm and its objective function are
chosen for the following reasons. First, it combines value
loss and policy loss into a single loss function, which al-
lows a single back-propagation to update all learnable com-
ponents contributing to this loss function, thus enabling
training end-to-end. Second, it has been shown that PPO
is sample efficient and works well across a wide range of
benchmarks (Schulman et al., 2017). Lastly, PPO can per-
form roll-outs in vectorised environments and update via
mini-batch. This makes distributed training possible, and it
is especially important for very large DNNs, where more
training is needed to encode the graph attributes. In our
empirical evaluation, we find training in a single machine
is sufficient, but as model sizes of DNNs continue to grow,
distributed training is necessary for the future. We leave
accelerating RL training for future work.

Note that our system environment is agnostic to the RL
algorithms, therefore it can be reused for different choices.
In this work, we focus on the PPO clip variant algorithm.

3.4 Graph embedding network architectures

In this section, we provide more details on the GNN archi-
tecture, as it is essential for applied RL in the tensor graph
superoptimisation domain. The GNN consists of one node
update layer, followed by k graph attention layers, and has
one final global update layer at the end. This architecture
is not designed without careful consideration, as each layer
has its responsibility to learn specific representations. The
first node update layer uses edge attributes to update node
attributes:

~h′i = σ{W (
∑
j∈Ei

~ej‖~hi)} (6)

Where ~h′i is the attribute output of node i, given its initial

node attribute ~hi and its incoming edges attributes ~ej . The
‖ operator stands for concatenation as commonly used in
GNN terminology, and σ is a non-linear activation function.

This layer is necessary because each node in the graph
corresponds to an operator kernel launch in the actual DNN.
The kernel launch time is determined by its incoming tensors
(edges), and the type of operator, such as MatMul, Conv2D,
etc. As a result, the first GNN layer is responsible to learn
the kernel launch time of each operator by combining the
operator type and the incoming tensor shapes.

The subsequent k graph attention layers (GAT) (Veličković
et al., 2018) are used to learn the topology of the computa-
tion graph. This is achieved by message passing between
nodes with their neighbouring nodes, and this mechanism
has been shown effective in graph-like data than other mech-
anisms using Euclidean metrics.

~h′i = σ(
∑
j∈Ni

αi,jW~hj) (7)

Where Ni represents neighbours of node i, and αi,j is
learned during back-propagation. The number of GAT layer
k controls how many message-passing steps are performed
and is a hyper-parameter. By performing more message-
passing steps, a node’s message can reach a more distant
neighbour but also increases computational demands. The
number of message-passing steps is specified in Appendix
A.

After passing through the GAT layers, each node has up-
dated its representation. The final layer aggregates all nodes’
attributes along with the original attribute of the graph to
produce a final graph representation:

~g′ = σ(
∑
N

~h‖~g) (8)

The final global update layer is also necessary, as tensor
graph superoptimisation changes the tensor graph structure
at each iteration. Thus, we need graph-level representa-
tion for decision-making. This also distinguishes X-RLflow
from other work, such as GO (Zhou et al., 2020a), where
they focus on making node-level decisions like fusion and
scheduling. X-RLflow operates on a higher graph-level
transformation and therefore is orthogonal to other RL-
based optimisers.

4 EVALUATION

In this section, X-RLflow is evaluated with TASO and Ten-
sat over a wide range of DNNs. PET is not compared given
the discussion in section 2.2.2. We seek to answer the fol-
lowing questions:

1. Can X-RLflow achieve further speedup than the greedy-
based method?

2. Can X-RLflow finish optimisation within a tolerable
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Table 3. Properties of evaluated DNNs. The complexity indicates
the average number of candidates at each iteration of the transfor-
mation process. Although this number may not comprehensively
quantify the search space, a higher number typically indicates there
are more combinatorial opportunities throughout the optimisation
process.

DNNS TYPE COMPLEXITY

INCEPTIONV3 CONVOLUTIONAL 50
SQUEEZENET CONVOLUTIONAL 20
RESNEXT-50 CONVOLUTIONAL 13
BERT TRANSFORMER 26
DALL-E TRANSFORMER 20
T-T TRANSFORMER 25
VIT TRANSFORMER 32

time compared to the existing systems?
3. Once X-RLflow is trained, can it generalise to other

tensor shapes given the same computation graph?

4.1 Experimental setup

4.1.1 Platforms

All experiments presented were performed using a single
machine running Ubuntu Linux 18.04 with a 24-core Intel
E5-2620@2.00GHz, 256GB RAM and an NVIDIA GeForce
GTX 1080. The hardware libraries used for running end-
to-end inference are CUDA 10.2 and CuDNN 7.6.5. Each
experiment is performed 5 times and we compute the means
and standard deviations.

4.1.2 Frameworks

As previously discussed, we used the open-sourced ver-
sion of TASO as the graph transformation backend. The
RL agent is implemented via JAX (Bradbury et al., 2018)
and jraph package (Godwin* et al., 2020). While tun-
ning hyper-parameters for RL is notoriously difficult, recent
works such as (Anonymous, 2022) perform large-scale stud-
ies across a wide range of environments, and suggest em-
pirically good hyper-parameter values. Therefore, we adopt
good hyper-parameters from those works, and we keep the
values fixed over all experiments.

4.1.3 Workloads

We have chosen state-of-the-art DNNs over a wide range of
tasks in our evaluation. InceptionV3 (Szegedy et al., 2016)
is a common, high-accuracy model for image classification
trained on the ImageNet dataset. ResNext-50 (He et al.,
2016) is also a deep convolutional network for vision tasks.
SqueezeNet (Iandola et al., 2016) is a shallower yet accurate
model on the same ImageNet dataset. BERT (Devlin et al.,
2019), ViT (Nayak, 2019), DALL-E (Ramesh et al., 2021),
T-T (Zhang et al., 2020), are large transformer networks

Figure 4. End-to-end inference speedup by TASO and X-RLflow.
In each case, the evaluation is run five times to measure the mean
and standard deviations.

that succeed across a wide range of tasks, including visions,
languages, texts and audios. Although the common building
block is multi-head attention, they are often combined with
different neural network blocks and thus overall have diverse
computation graph structures. Figure 3 lists the properties
of those DNNs. Note that some tensor operators are not
supported by TASO and we simply skip those operators
when building the computation graph.

4.2 End-to-end speedup

Figure 4 shows the end-to-end inference latency speedup of
TASO and X-RLflow. For TASO, we run with its default
setting as in its artefact evaluation. For X-RLflow, each
agent was trained from the respective graph, as described
in Section3, and they are trained for over 1000 episodes.
All agents use the same reward function as Equation 2 as
well as the same set of hyper-parameter, and common hyper-
parameters are listed in Appendix A.

Firstly, we can observe among all cases, X-RLflow achieves
better speedup than TASO’s substitution engine. This ver-
ifies that X-RLflow can learn to make better decisions for
long-term rewards and leverage the end-to-end feedback
signal to guide its decision-making. X-RLflow finds more
globally optimal tensor graph structures after the transfor-
mation process.

We can also observe there are two DNNs where X-RLflow
achieves much better speedup than TASO. In the case of
SqueezeNet, TASO achieves a negative speedup. This is
because the cost model is inaccurate, and it misleads the
substitution engine. Note that the cost modelling depends on
the execution hardware, so different GPUs may be evaluated
differently. The cost modelling issue is also reported by
Tensat, where it affects the extraction of the E-graph.
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Figure 5. This heatmap shows the rewrite rules applied by X-
RLflow. Although there are over 100 possible rewrite rules, we
only show the rules applied at least once. The count for each
rewrite rule shows the number of times it has been applied. Note
that each application of the rewrite rule takes place at different lo-
cations of the target computation graph. A higher count means that
X-RLflow can find a long sequence of subgraph transformation
before termination. This can indicate X-RLflow has discovered a
performant graph via the sequence of subgraph transformation.

For ViT, we observe an over 40% speedup. While this ap-
pears to be a special case, we observe that after a sequence
of graph-level optimisation, some operators have no data
dependencies so they can be pre-processed before actually
running inference. This is similar to constant folding in
compiler optimisation. Cost modelling does not consider
constant folding because it simply sums over all operators’
execution times. Thus, by using the end-to-end feedback
signal, X-RLflow can discover better tensor graph struc-
tures by considering downstream optimisation opportunities.
This also indicates more optimisation opportunities can be
revealed by combining the compiler optimisation pipeline
across different layers of IRs.

4.3 Transformation heatmap

Figure 5 shows the counts of rewrite rules that are applied to
the tensor graphs during the optimisation process. Notably,
DNNs that primarily consist of convolutional operators and
the ones that consist of matrix multiplication are targeted
by different tensor graph rewrite rules. In general, convo-
lutional operators can be rewritten by more rules, but they
have shorter transformation sequences, meaning they are
less beneficial by long-term delayed reward. Transformer-
type of DNNs on the other hand, are targeted by fewer
rewrite rules but have longer transformation sequences. We
conclude that RL by design maximises long-term rewards,
and thus it shows more advantages in long sequential tasks.

Figure 6. Optimisation time taken for TASO and X-RLflow.

4.4 Optimisation time

Figure 6 shows the optimisation time required to transform
the optimised graph of the evaluated DNNs. We note that
the optimisation time for the X-RLflow does not include the
time needed to train the RL agents. We can see TASO in
all cases take less than 75 seconds to generate its optimised
graph given its default setting. Although TASO has a con-
figurable optimisation time budget, increasing the budget
does not give more speedup while causing a much longer
optimisation time. For example, the optimisation time is
10x more while the performance increase is less than 5%.
Therefore, We conclude this phenomenon indicates greedy
substitution is stuck in the local optimum and we use the
default budget for TASO.

X-RLflow generally takes more time to optimise, because
the RL agent performs a forward pass to make decisions at
every iteration of the transformation. This can be acceler-
ated by putting the agent’s networks in GPU. However we
only have one GPU and its memory is pre-allocated by the
backend of the environment, i.e. TASO, so we are unable
to do that. The optimisation time can be reduced signifi-
cantly if the agent’s inference can be accelerated by another
GPU. Even in the case of the CPU, we can see it takes less
than 200 seconds in optimisation, which is affordable before
model deployment.

4.5 Generalisation to different tensor shapes

Figure 7 shows the generalisation ability of X-RLflow to
various tensor shapes on DALL-E and InceptionV3 respec-
tively. This is possible when an update in the data processing
pipeline results in different tensor shapes to input to DNN
models. We show that by training X-RLflow in a static
shape environment once, it is sufficient to generalise and
achieve good performance for different input tensor shapes.

Performing training on multiple graphs and generalising to
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Figure 7. Generalisation to different tensor shapes on DALL-E and
InceptionV3. The suffix number following the name of DNNs
indicates the input tensor shape. For example, ‘InceptionV3-225’
indicates the input image has a height and width of 225. ‘*’ indi-
cates the DNNs where X-RLflow is trained to optimise.

Figure 8. Comparison of end-to-end DNNs speedup with Tensat.

unseen DNNs is a more significant generalisation direction
we would like to investigate. However, this poses a chal-
lenge to the GNN encoder, as it is responsible to embed
diverse computation graphs. As such, it is much more com-
putationally expensive to achieve held-out graph generation.
We will leave this for future work.

4.6 Comparison with Tensat

Tensat is another tensor graph superoptimiser that employs
equality saturation as mentioned in section 2.2. Figure 8
shows a comparison of X-RLflow with Tensat.

We can see that X-RLflow outperforms Tensat in BERT and
InceptionV3, but falls short in Squeezenet and ResNext-50.
Note that Tensat is sensitive to its parameters, and we use
the default values as reported in their artefact evaluation.
By varying Tensat’s parameters, it is possible to have a

performance increase but also raises the risk of running out
of memory and optimisation timeout.

By examining the dataflow graph of SqueezeNet, Incep-
tionV3 and ResNext-50, we notice that while they all pri-
marily consist of convolution blocks, InceptionV3 has more
unique blocks in its computation graph, indicating more
combinatorial optimisation opportunities. This is also ver-
ified by the “complexity” as shown by Table 3. As RL
favours more combinatorial chances, X-RLflow is more
likely to perform well in complex graphs.

X-RLflow outperforms Tensat when optimising BERT. This
is because BERT’s multi-head attention blocks mainly con-
sist of matrix multiplication, and there is a specific “multi-
pattern rewrite rule” for matrix multiplication in Tensat that
can grow the E-graph extremely large. As a result, Tensat
has to limit the application of multi-pattern rewrite rules up
to a constant k. In their default setting, k is set to 1, and this
is certainly not enough to explore all rewrite opportunities
for BERT. Increasing k will likely increase performance, but
also dramatically increase the optimisation time and mem-
ory usage. To know more about the multi-pattern rewrite
rules, we refer interested readers to the section 4 of Tensat’s
paper. X-RLflow does not use the E-graph data structures,
so it does not suffer from the multi-pattern rewrite rule
issues.

We also want to run more experiments on transformer types
of DNNs, but we are unable to do so, because Tensat needs
to convert TASO’s graph representation to its S-exprs rep-
resentation, and strictly filters out cycles when building the
E-graph. When we try to add a new transformer, the cycle
filtering algorithm reports an error. As such, we are unable
to perform more experiments except for those provided by
Tensat. On the contrary, X-RLflow does not use a new rep-
resentation, and therefore it can optimise any computation
graph as long as it is supported by TASO.

In future work, we would like to combine X-RLflow with
Tensat. Specifically, as the E-graph is not saturated, Tensat
re-introduces the phase-ordering issue when building the
E-graph, which can be addressed by RL. On the other hand,
the E-graph can compactly represent many graph IRs, which
can decrease the state space for RL. We believe combining
RL with equality saturation will lead to better performance
for optimising computation graphs.

5 RELATED WORK

5.1 Optimisation of computation graphs

Rule-based approaches such as those used in TensorFlow
(Abadi et al., 2015; 2016) and TVM (Chen et al., 2018) use
a pre-defined set of transformations to optimise computa-
tion graphs. On the contrary, tensor graph superoptimisers,
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such as (Jia et al., 2019b;a; Yang et al., 2021; Wang et al.,
2021), automatically search for transformations to apply to
the input graph. In addition, OCGGS (Fang et al., 2020)
theoretically proves the graph substitutions problem to be
NP-hard, and comes up with a dynamic programming ap-
proach to exactly solve the problem. However, the exact
solution is impractical due to the long search time. As a
result, an approximate sampler is also proposed to solve this
problem. However, it fails to achieve better performance
than existing systems. We have described in detail in section
2.2 the advantages and drawbacks of each system, and our
motivation for using RL to tackle this problem. We show
that the optimisation process is more globally optimal and
generalisable with X-RLflow.

5.2 RL in system optimisation

There has been an effort to apply reinforcement learning to
system optimisation. Due to its theoretical soundness for
handling sequential decision-making problems, RL has been
applied to circuits design (Roy et al., 2021), the compiler
passes ordering (Haj-Ali et al., 2020), and datacenter control
(Fuhrer et al., 2023). Among existing works, NeuRewriter
(Chen & Tian, 2019) is a particularly relevant work that
implements an RL-based rewrite system to perform expres-
sion rewrite, job scheduling and vehicle routing. While
related, X-RLflow performs optimisation in the tensor graph
domain with a specific design of the RL agent and the envi-
ronment to handle tensor graph transformation. As such, it
is complementary to NeuRewriter.

GO (Zhou et al., 2020b) is an RL-based graph optimiser that
performs node fusion, node scheduling and device place-
ment at once. As a result, GO outputs decisions for each
node in the computation graph. On the other hand, X-
RLflow is specific to graph-level optimisation, so the tensor
graph structure changes dynamically throughout the optimi-
sation process. As such, X-RLflow is orthogonal to existing
works and can be used to optimise before performing down-
stream optimisation, such as GO.

5.3 Model-based reinforcement learning

Model-based RL is a class of reinforcement learning algo-
rithms in which we aim to learn a model (or use a given
model) of the real environment where an agent acts. The
world model (Ha & Schmidhuber, 2018a) proposed to learn
the environment dynamics using recurrent neural networks.
Alternative approaches have also been proposed such as
imagination-augmented agents (Racanière et al., 2017) and
model-based value estimation for model-free agents (Fein-
berg et al., 2018). The main benefit of model-based rein-
forcement learning is a world model help reduce the agent
interaction with the environment, thus accelerating the train-
ing process. Moreover, the world model may provide bet-

ter generalisation ability because it can model the latent
transition of the state space. Recent advances in model-
based reinforcement learning show a world model agent
can outperform its model-free counterpart across diverse do-
mains including vision and control tasks, with a fixed set of
hyper-parameters. X-RLflow may be combined with those
methods to have better sample efficiency and generalisation
ability because the environment transition does not assume
a fixed RL algorithm.

6 LIMITATIONS AND FUTURE WORK

There are a few limitations with X-RLflow. First, training
RL is computationally expensive and time-consuming. Po-
tential solutions to mitigate the problem includes setting up a
distributed training environment, where training data can be
generated in parallel. This allows trading off training time
with computing power. On the other hand, we could exploit
the layer structure of DNNs, and simply perform optimi-
sation on sub-graphs individually. However, this requires
certain heuristics to avoid missing out on optimisation op-
portunities across different sub-graphs. Second, X-RLflow
cannot be generalised to unseen tensor graphs at the moment.
We expect by adopting methods from model-based RL and
training the agent across various DNNs, X-RLflow can gain
stronger generalisation ability. Alternatively, combining RL
with equality saturation can reduce the state space of RL
because E-graphs can compactly represent many graph IRs,
and this may be another direction to explore.

7 CONCLUSION

In this work, we present X-RLflow as a novel end-to-end
tensor graph structure superoptimiser. We explain our mo-
tivations for using RL and describe our formulation of the
RL algorithm in the tensor graph domain. We also present
the architecture design of X-RLflow in detail. Various ex-
periment results show that X-RLflow can achieve better
performance over a wide range of evaluation DNNs and
have up to 40% speedup over state-of-the-art systems. We
also demonstrate its generalisation ability by performing
inference in unseen environments. We argue that the ap-
plicability of RL in a delayed reward environment sheds
light on system optimisation when the feedback signal is
expensive. The effectiveness of X-RLflow suggests that it is
a promising direction for tensor graph structure superopti-
misation.
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APPENDICES

A Hyper-parameters

Table 4. Hyper-parameter values

Name Value Explanation

Learning rate 5e− 4 Learning rate of PPO’s policy and value networks
Value loss coefficient(c1) 0.5 Value loss coefficient

Entropy loss coefficient(c2) 0.01 Entropy loss coefficient
Edge attribute constant (M) 4096 The constant to normalise all edge attributes
Number of GAT layers (k) 5 Number of GAT layers

Update frequency 10 The frequency to perform an update
feedback frequency (N) 5 The frequency to perform an end-to-end inference and return as reward

MLP heads [256, 64] The MLP hidden neurons for policy and value networks
Batch size 16 Batch size for updating agent’s networks


