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ABSTRACT
As deep learning models nowadays are widely adopted by both
cloud services and edge devices, reducing the latency of deep learn-
ing model inferences becomes crucial to provide efficient model
serving. However, it is challenging to develop efficient tensor pro-
grams for deep learning operators due to the high complexity of
modern accelerators (e.g., NVIDIA GPUs and Google TPUs) and
the rapidly growing number of operators.

Deep learning compilers, such as Apache TVM, adopt declara-
tive scheduling primitives to lower the bar of developing tensor
programs. However, we show that this approach is insufficient to
cover state-of-the-art tensor program optimizations (e.g., double
buffering). In this paper, we propose to embed the scheduling pro-
cess into tensor programs and use dedicated mappings, called task
mappings, to define the computation assignment and ordering di-
rectly in the tensor programs. This new approach greatly enriches
the expressible optimizations by allowing developers to manipulate
tensor programs at a much finer granularity (e.g., allowing program-
statement-level optimizations). We call the proposed method the
task-mapping programming paradigm. In addition, we propose a
new post-scheduling fusion optimization that allows developers
to focus on scheduling every single operator and automates the
fusion after scheduling. It greatly reduces the engineering efforts
for operator fusion. Our proposed paradigm also constructs an ef-
ficient hardware-centric schedule space, which is agnostic to the
program input size and greatly reduces the tuning time.

With the proposed paradigm, we implement a deep learning
compiler – Hidet. Extensive experiments on modern convolution
and transformer models show that Hidet outperforms state-of-the-
art DNN inference framework, ONNX Runtime, and compiler, TVM
equippedwith scheduler AutoTVMandAnsor, by up to 1.48× (1.22×
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on average). It also reduces the tuning time by 20× and 11× com-
pared with AutoTVM and Ansor, respectively. We open-sourced
hidet at https://www.github.com/hidet-org/hidet.
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1 INTRODUCTION
Deep neural networks (DNNs) [35] have achieved state-of-the-art
(SOTA) results in various tasks such as image recognition [25, 34,
49, 50], natural language translation [16, 36, 48], and autonomous
driving [14]. In deployment environments, these models are re-
peatedly executed to serve continuous user requests, named model
serving. Thus, it is crucial to reduce the latency and maximize the
throughput of model execution to ensure safety, save energy, and
improve user experience.

There are two major ways to execute a DNN model. (1) Deep
learning (DL) frameworks such as TensorFlow [1], PyTorch [41]
and ONNX Runtime [15] dispatch operators to kernel libraries such
as cuDNN [12], cuBLAS [26], and CUTLASS [32] during execution.
(2) On the other hand, DL compilers such as Tensorflow-XLA [44]
and TVM [9] automatically generate kernels through a compilation
process for the given operators. Various schedulers such as An-
sor [65] and AutoTVM [11] are used to schedule the kernels during
compilation to achieve high performance.

Kernel libraries (e.g., cuDNN [12] and cuBLAS [26]) provide a
collection of highly optimized hand-crafted kernels (e.g., convolu-
tions and matrix multiplications). These libraries typically achieve
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near-peak performance on widely used input sizes, as they are
able to implement a large spectrum of optimizations in low-level
languages (e.g., CUDA C/C++ and assembly code). However, man-
ually tweaking a kernel to optimize for performance is laborious,
error-prone, and requires expertise in writing low-level language
codes. Thus, it is difficult to generalize to other input shapes, new
operators, and kernel fusion patterns. In addition, template-based
libraries such as CUTLASS [32] employ C++ templates to generate
tensor programs for different input shapes on the fly. Although
template-based libraries can achieve competitive performance on
many input shapes by dynamically tuning the optimization hyper-
parameters, they do not reduce the complexity of writing tensor
programs for new operators and only provide limited fusion ca-
pability (e.g., only a small number of predefined operators can be
fused with matrix multiplication).

Alternatively, DL compilers [4, 9, 43, 44, 67] are proposed to com-
pile deep learning networks into tensor programs automatically.
Existing state-of-the-art DL compilers adopt the idea of decou-
pling computation definition and scheduling, originally proposed
by Halide [43] and TVM [9]. The computation definition of an
operator only defines how each element of the output tensor is
computed mathematically, and the schedule defines the way the
execution is performed, such as the loop order and thread bind-
ing [9, 43]. Compilers leverage schedulers like AutoTVM [11] and
Asnor [65] to tune the hyper-parameters of the schedule to optimize
operator performance for each input shape. Unlike kernel libraries
and templates that target a fixed set of operators and limited fusion
patterns, compilers are capable of supporting more operators and
more flexible fusion patterns automatically.

However, existing state-of-the-art compilers are mostly based on
the loop-oriented scheduling primitives, which manipulate the loop
structure of a tensor program in a declarativemanner (e.g., loop split
and reorder). Although loop-oriented scheduling primitives have
achieved great success in simplifying tensor program writing [9,
11, 65], certain key optimizations (e.g., double buffering [32]) are
hard to implement. Specifically, loop-oriented scheduling primitives
cannot express the fine-grained tensor program transformations
required by the key optimizations discussed in Section 3.1. Besides,
loop-oriented scheduling also suffers from the long kernel tuning
time due to the rarity of efficient schedules in the tremendous
tuning spaces. For instance, AutoTVM [11] takes 15 hours to tune
a single CNN model Inception V3 [50] on a modern GPU.

In this work, we propose a new paradigm for writing efficient
tensor programs: task-mapping-oriented programming paradigm.
In this paradigm, we define the parallelizable computations in an
operator as tasks, and the process of assigning and ordering the
tasks to parallel processing units (e.g., threads) as scheduling. The
developers can directly define the scheduling in the tensor program
through task mappings 1. This paradigm simplifies the development
of tensor programs without sacrificing the ability to express opti-
mizations requiring fine-grained program manipulation. With the
in-program style of scheduling, this paradigm also allows us to
search the tensor program in an efficient hardware-centric schedule
space that is agnostic to input size to dramatically reduce the tuning
1The name task mapping comes from the abstraction where a scheduling process
can be considered as the one that maps tasks to processing units in both spatial and
temporal dimensions.

time. We also propose post-scheduling fusion to fuse the scheduled
operator with surrounding operators automatically, so developers
don’t need to worry about fusion when writing schedule templates.

We implement a new DL compiler called Hidet based on the pro-
posed ideas. In this work, we mainly focus on optimizing DNN in-
ference on GPUs, as it is the most commonly used DNN accelerator.
The proposed ideas also apply to other accelerators such as CPUs
and TPUs [31]. Extensive experiments on modern convolutional
and transformer models show that Hidet outperforms state-of-the-
art DL inference frameworks and schedulers, AutoTVM [11] and
Ansor [65], by up to 1.48× (1.22× on average) while reducing the
tuning time of the two schedulers by 20× and 11×, respectively.

We summarize our contributions as follows:
• We identify and present the limited expressiveness of loop-
oriented scheduling adopted by state-of-the-art DL compilers
to be their fundamental limitation in efficiently compiling
complex tensor programs (e.g., matrix multiplication).

• We introduce the task-mapping-oriented programming par-
adigm to simplify tensor program development without sac-
rificing the expressiveness of optimizations compared with
hand-crafted implementations. Based on this paradigm, we
propose post-scheduling fusion to fuse the scheduled pro-
gram with surrounding operators. The paradigm also allows
us to search in the hardware-centric schedule space to reduce
the tuning time significantly.

• We implement a new DL compiler, named Hidet, based on
the proposed ideas. Extensive experiments show that Hidet
outperforms state-of-the-art DL frameworks and compilers
by up to 1.48× and reduces tuning time by 11×. We have
open-sourced Hidet here.

2 BACKGROUND
2.1 CUDA Programming Model
The CUDA programming platform [40] is widely used by deep learn-
ing systems on NVIDIA GPUs. In this section, we briefly introduce
the CUDA programming model on modern GPUs.

B B

Graphics Processing Unit  (GPU) 

Streaming 
Mult iprocessor  (SM)

Kernel

B

Thread Launch
Kernel SM SMSM

Thread
Block

...

Used Smem:

Used Registers:

B B B BWarp...
32 threads

SM SMSM

SMSM ......

Figure 1: An overview of CUDA programming model.

Kernel, Thread Block, and Thread. When running a workload on
the GPU, thousands of threads will be executed. Each thread exe-
cutes the same piece of code, called kernel code. When launching a
kernel, a grid of thread blocks will be dispatched onto the GPU as
shown in Figure 1. Each grid usually comprises tens to thousands of
thread blocks, while each thread block comprises tens to hundreds
of threads. In the kernel code, pre-defined variables threadIdx and
blockIdx, and suffix x, y, and z are used to access the 3-dimensional
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index of thread in a thread block and the thread block in the grid
of blocks, respectively.

Hardware Implementation. Each modern GPU has tens to hundreds
of streaming multiprocessors (SMs). Each SM supports scheduling up
to thousands of concurrent threads [40]. Threads in a thread block
are partitioned into warps, and each warp contains 32 consecutive
threads executing the same instructions. There are two kinds of
programmable on-chip memory: shared memory and registers. Reg-
isters are privately allocated to each thread, while shared memory
is allocated to each thread block and only threads in the thread
block can access it. When launching a kernel, the thread blocks
are dispatched to the SMs wave by wave [23]. Each thread block
will only be dispatched to a single SM while each SM may contain
multiple thread blocks. The number of maximum resident thread
blocks per SM is limited by the size of shared memory, register file,
and warp scheduling units.

Operators in the deep neural network are implemented as GPU
kernels. When running a neural network, we launch these kernels
following an order satisfying the operator dependency. Among
these operators, matrix multiplication (also known as a linear or
dense layer) is one of the most important operators. We next present
an efficient implementation of matrix multiplication using CUDA
and take it as an example throughout the paper.

2.2 Efficient Matrix Multiplication
This section illustrates an efficient implementation of matrix multi-
plication 𝐶 = 𝐴𝐵 (all matrices are 1024 × 1024) on modern NVIDIA
GPUs via Tensor Cores [13]. Figure 2 shows the desired workflow. In
step 1 , we decompose the matrix multiplication into independent
subtasks by tiling the M and N dimensions. After tiling, there will
be 𝑀

M tile size ×
𝑁

N tile size independent subtasks while each sub-task is
a matrix multiplication with size: M tile size×N tile size×𝐾 . Each
subtask will be assigned to a thread block. Inside each thread block,
the K dimension will be further tiled into 𝐾

K tile size tiles, and the
thread block will apply step 2 - 3 to each K tile. In step 2 , threads
in the thread block load fragments of matrix A and B from global
memory to shared memory collectively (i.e., different threads load
different parts of the fragments). All threads in a thread block will
be synchronized to make sure the data loading is finished before
proceeding to the next step. In step 3 , 4 warps in the thread block
work on 4 × 4 = 16 matrix multiply accumulates (MMAs), each of
which is an operation 𝐶16×16 = 𝐴16×8𝐵8×16 +𝐶16×16 . Each warp
conducts 4MMAs using Tensor Core [13] with 4 sequential itera-
tions. Once we accumulate the results of matrix multiplication for
each K tile, we 4 store the results from the accumulating register
to global memory. Figure 3 gives the pseudo-code of the 4 steps.

There are twoways to implement the kernel: (1) directly write the
CUDA C code as in kernel libraries [12, 26, 32], or (2) use declarative
loop-oriented scheduling primitives. In the next subsection, we
would give a brief introduction to the second method.

2.3 Declarative Loop-Oriented Scheduling
To simplify tensor program optimization, Halide [43] proposes a
programming paradigm of tensor programs, in which the computa-
tion definition and scheduling of the computation are decoupled.
This programming paradigm is adopted by state-of-the-art DNN

Decompose  into 
indepenent sub tasks
run by thread blocks

A

B

C

K=1024

M
1024

N=1024 N tile size 64

M tile size 64

K tile size 8

1

Smem A

Smem B

M tile 
size 64

N tile size 64

K tile size 8

0 1 0 1

2 3 2 3

0 1 0 1

2 3 2 3

Warp 0 Warp 1

Warp 2 Warp 3

0 1

2 3

4 Iterations for 
each warp

Tensor Core MMA 
(16x16x8)

2 Load A and B from global memory to shared 
memory cooperat ively by all threads in block

3 Matrix-Multiply Accumulate (MMA)

4 Store C from register to global memory

Repeat for each K tile

Smem A 

Smem B

Gmem A 

Gmem B Global Memory

Shared Memory

Cooperatively Load

CUDA Matr ix 
Mult iplicat ion 

Figure 2: Efficient Matrix Multiplication on CUDA Platform.

def matmul(A: fp32[M, K], B: fp32[K, N], C: fp32[M, N]):

      SmemA, SmemB = shared fp32[64, 8], fp32[8, 64]

      RegsC = local fp32[...]
      ... # Step      : Calculate sub-task offset
      for k0 in range(128):   # Iterate each K tile
            # Step      : Load A and B frag. to SmemA and SmemB
            SmemA, SmemB = cooperative_load(A, B, k0)
            sync_threads()
            # Step      : Block MMA (RegsC = SmemA * SmemB + RegsC)
            RegsC = block_mma(SmemA, SmemB, RegsC)  
            sync_threads()
      ...  # Step      : Write back C (RegsC  => C)

1
2
3
4
5
6
7
8
9

10
11
12

1

2

3

4

Figure 3: Pseudo-code of Matrix Multiplication.

compiler TVM [9] and schedulers (e.g., AutoTVM [11] and An-
sor [65]). Since this paradigm offers a set of declarative scheduling
primitives to manipulate the loop structure of tensor programs, we
name it declarative loop-oriented scheduling.

Figure 4 shows the workflow of loop-oriented scheduling. De-
velopers first provide a mathematical computation of the operator
that defines how each element in the tensor is computed. The exam-
ple gives the definition of matrix multiplication, where the (i, j)-th
element of the output is a sum reduction. Given the computation
definition, the schedulers first 1 generate a default tensor program
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1 Generate Default Program Automatically

Computat ion 
Definit ion

Default  
Program

Scheduled 
Program

2 Apply Declarative Loop-Oriented Scheduling Primitives

(oi, ii), (oj, ij)= split(i,  factor=64), split(j,  factor=64)
reorder(oi, oj, ii, ij)
bind(oi, blockIdx.x);  bind(oj, blockIdx.y)
...

B = compute([M, N],  lambda i, j: reduce([K], A[i, k] * B[k, j]))

for i in range(M): for j in range(N): for k in range(K):
      C[i, j] += A[i, k] * B[k, j]

for ii in range(64): for ij in range(64): for k in range(K):
   C[i, j] += A[ii + blockIdx.x * 64, k] * B[k, ij + blockIdx.y * 64] 

Figure 4: Workflow of loop-oriented scheduling.

Table 1: Loop-oriented scheduling primitives in TVM [9]. The
primitive fuse, split, reorder, and bind transforms the pro-
gram by fusing loop, splitting loop into sub-loops, reordering
loops, and binding a loop to a hardware-specific axis.

Schedule Pr imit ives Or iginal Program Scheduled Program

fuse(i, j) for i in range(128):
      for j in range(4):
            body(i, j)

for ij in range(512):
      body(ij /  4, ij % 4)

split(i, 128) for i in range(512):
      body(i)

for oi in range(4):
      for ii in range(128):
            body(oi * 128 + ii)

reorder(i, j) for i in range(128):
      for j in range(4):
            body(i, j)

for j in range(4):
      for i in range(128):
            body(i, j)

bind(i, threadIdx.x) for i in range(128):
      body(i)

body(threadIdx.x)

from the computation definition automatically by translating the
compute and reduce primitives to nested loops. Then, a series of
declarative scheduling primitives are applied to transform the loop
structure of the default tensor program for better performance on
the specific hardware. Table 1 shows the scheduling primitives
in TVM [9].2 In the example of step 2 , we only list the first few
scheduling primitives to implement the matrix multiplication, as
TVM has used over 80 primitives to schedule matrix multiplication.
Starting from the default program, we first split the i and j loops
with factor 64 into (oi, ii) and (oj, ij), respectively, then re-
order loops into (oi, oj, ii, ij), and finally bind oi and oj to
blockIdx.x and blockIdx.y, respectively. With these primitives,
we can get the scheduled program in Figure 4.

There are several ways to make use of a programming para-
digm in a deep learning compiler. Intuitively, we can manually
write a schedule for each workload (i.e., an operator with a con-
crete input on certain hardware) [9, 43]. However, this approach
requires significant engineering efforts to achieve optimal perfor-
mance for all widely used operators and their typical input sizes.
Consequently, tunable parameters (e.g., tile size and loop orders)
are introduced for developers to specify in the schedules. In this
way, a manual schedule becomes a schedule template and can be
2Schedule primitives that relocate loops are omitted.

optimized by auto-tuning frameworks [11] for various input shapes
and hardware. To further save the time of writing a schedule tem-
plate, auto-scheduling approaches that automatically generate a
schedule by applying predefined rules to the computation definition
have been proposed [2, 65].

However, as we illustrate in the next section, the schedule space
from the loop-oriented scheduling paradigm is still inefficient. As
a result, 1) it is challenging to achieve competitive performance
on operators that are highly optimized by kernel libraries since
loop-oriented scheduling can not express some key optimizations,
2) schedulers need hours to days to find the best schedule configu-
ration in the schedule space.

3 MOTIVATION
In this section, we summarize the challenges faced by state-of-the-
art loop-oriented scheduling.

3.1 Limited Optimization Support
The declarative loop-oriented scheduling primitives suffer from
limited support for key optimizations. We use an important opti-
mization, double buffering [6, 32], that has been adopted in several
vendor libraries (e.g., cuBLAS [26] and CUTLASS [32]) but not
supported by TVM [9], to illustrate this fundamental limitation.

The implementation of matrix multiplication in Figure 3 is sub-
optimal since all threads in the same thread blocks are likely to be
blocked by one type of hardware resource (i.e., memory bandwidth
in Step 2 or computation units in Step 3) while leaving the other idle.
This is because, in Figure 3, the data loading (L7) and computation
(L10) use the same buffer, and synchronization (L8) needs to be
used to satisfy data dependency.

      RegsA, RegsB = register fp32[...], fp32[...]

      SmemA, SmemB = shared fp32[2, 64, 8], fp32[2, 8, 64]

      ...
      SmemA[0], SmemB[0] = cooperative_load(A, B, 0)
      sync_threads()  
      for k0 in range(127):

            p, q = k0 % 2, (k0 + 1) % 2

            RegsA, RegsB = cooperative_load(A, B, k0 + 1)

            RegsC = block_mma(SmemA[p], SmemB[p], RegsC)

            SmemA[q], SmemB[q] = RegsA, RegsB

            sync_threads()

      RegsC = block_mma(SmemA[0], SmemB[0], RegsC)
      ...

1
2
3
4
5
6
7
8
9

10
11

12
13

Preloading Next  Tile of A/ B into Regs

Computation of Current  Tile

Two Buffers for A & B

Store Next Tile of A/ B into Shared Memory

Figure 5: Double Buffering Optimization.

The double buffering optimization shown in Figure 5 alleviates
the aforementioned problem by using two buffers: one is used for
pre-loading the fragments for the next iteration (L8 and L10), while
the other is used for computation in the current iteration (L9). We
first preload the next tile of matrix A and B into registers (L8),
and store them to shared memory after the computation of the
current tile (L10). This is more efficient because computation in
L9 can be executed while the global memory loading in L8 is on
the fly with thread-level parallelism. With double buffering, the
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threads in a thread block can utilize both memory accessing units
and computation units at the same time.

However, this optimization cannot be implemented using ex-
isting declarative loop-oriented scheduling primitives in Table 1.
This is because none of the schedule primitives can manipulate the
loop body at a fine granularity3. As a result, although loop-oriented
scheduling simplifies tensor programwriting, its declarative style of
scheduling prevents developers from implementing optimizations
requiring fine-grained manipulation of tensor programs. We want
to highlight that double buffering optimization is only an example
of the limited expressiveness of existing loop-oriented scheduling.
Besides double buffering, thread block swizzle [7, 53] and efficient
usage4 of Tensor Core MMA PTX instruction [28], and multi-stage
asynchronous prefetching [32] are widely used optimizations in
kernel libraries [26, 32], but are difficult to implement with declara-
tive loop-oriented scheduling. To implement these optimizations,
we need a more expressive method to write tensor programs and
schedule their computations.

3.2 Dedicated Schedule Template for Fusion

Conv2d

BN

ReLU

Anchor Op Element-wise Op

Fused Operator 
Conv2d-Bn-ReLU

Fusible Sub-Graph

Schedule Sub-Graph with 
Anchor Op's Schedule Template

Figure 6: Workflow of TVM sub-graph fusion.

One important advantage of compilers over kernel libraries is
the ability to optimize arbitrary workloads, especially workloads
with multiple fused operators (e.g., Conv2d-BN-ReLU in convolu-
tional neural networks [25], and Reshape-Matmul-Transpose in
transformer models [16]). For example, Figure 6 illustrates how
TVM [9] fuses Conv2d-BN-ReLU into a single kernel. Specifically,
TVM groups operators to form sub-graphs. Each sub-graph can con-
tain only one anchor operator, which is usually the most compute-
intensive one (e.g., convolution or matrix multiplication) with a
carefully designed schedule template. Then, the schedule template
of the anchor operator will be used to schedule the entire sub-graph,
meaning that the schedule template has to support all possible fu-
sion scenarios, which greatly increases the complexity of writing
schedule templates. Although auto-schedulers (e.g., Ansor [65]) are
proposed to generate schedule templates automatically from the
computation definition with pre-defined auto-scheduling rules, it
is challenging to extend the auto-schedulers with new rules. This
is because the new rule has to be compatible with all existing rules
and needs to be general enough to support all operators. Thus,
it is still challenging to support fusion, while not increasing the
complexity of writing specialized schedule templates.

3Even though TVM tried to use a new primitive called double_buffer to implement
double buffering optimization, it does not separate the global memory loading and
shared memory storing, thus can only achieve sub-optimal performance.
4Directly use MMA PTX instruction instead of WMMA instruction [28].
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Figure 7: Sizes of schedule spaces adopted by AutoTVM [11].

3.3 Long Tuning Time
In addition to expressiveness and extensibility, the tuning time
of existing state-or-the-art schedulers [2, 11, 65] typically ranges
from hours to days due to inefficient schedule spaces. The major-
ity of their schedule spaces are composed of loop tiling factors.
To constrain the schedule space size and avoid conditional if-else
branches, existing schedulers only cover perfect tile sizes (i.e., only
tile 𝑛-length loop with proper factors of 𝑛). For example, potential
tile factors of a loop with length 10 only include 1, 2, 5, and 10. As a
result, the space constructed by these schedulers with loop-oriented
scheduling depends on the input shapes of the target workload. We
name this category of schedule space as input-centric schedule space.
We observe two challenges with input-centric schedule space. (1)
The schedule space size grows exponentially along with the number
of input size factors. Figure 7 shows the number of schedules for
each convolution in ResNet-50 [25]. There are up to 108 schedules
to search for a single convolutional layer. (2) The schedule space
might not include the schedule with optimal performance as non-
perfect tile sizes are not considered. An extreme example is that
both Ansor and AutoTVM fail to find a valid schedule for matrix
multiplication with M=N=K=2039 because 2039 is a prime number.

To address the first challenge, the state-of-the-art schedulers [11,
65] employ a cost model to predict the performance of schedules
and use genetic evolution search to increase the search efficiency.
However, the search process still requires about half an hour to tune
a single operator, resulting in 8 to 15 hours to tune an Inception
V3 model [50]. Long tuning time prevents existing schedulers from
co-optimizing DNNs with graph-level optimizations [30, 37] and
upper-level applications such as neural architecture search [71].
Both of them need the latency of a kernel to guide their optimization
and network searching within a short amount of tuning time.

4 KEY IDEAS
To address the challenges mentioned above, we propose a new
programming paradigm for tensor programs – task-mapping pro-
gramming paradigm (Section 4.1). This paradigm defines descriptive
objects, called task mapping, to specify the task assignment and
ordering. Task mappings replace the original loop-oriented sched-
uling primitives and are directly defined and used in the tensor pro-
gram, which allows more optimizations compared with the existing
declarative style of scheduling. We also propose post-scheduling fu-
sion (Section 4.2) to simplify sub-graph scheduling by automatically
fusing surrounding operators to the operator with scheduled tensor
program. The proposed paradigm also enables efficient partial tiling
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def cooperative_load_A(A: fp32[64, 8]):

      SmemA = shared fp32[64, 8]

      t = threadIdx.x 

      for io in range(4):

            i, k = io * 16 + t /  8, t % 8

            SmemA[i, k] = A[i, k]

SmemA = compute([64, 8], lambda i, k: A[i, k])

for i in range(64):
      for k in range(8):
            SmemA[i, k] = A[i, k]

  io, ii = split(i, 16)
  iik = fuse(ii, k)
  bind(iik, threadIdx.x)
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Lower task mapping
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      task_map =  repeat(4, 1) × spatial(16, 8)

      for  i, k  in task_map(threadIdx.x):

def cooperative_load_A(A: fp32[64, 8]):

      SmemA = shared fp32[64, 8]

            SmemA[i, k] = A[i, k]

Task Mappings Task Shape Workers Mapping (worker id w => assigned tasks)

repeat(4, 1) (4, 1) 1 [(0, 0), (1, 0), (2, 0), (3, 0)]

spatial(16, 8) (16, 8) 128 [(w /  8, w % 8)]

repeat(4, 1) × spatial(16, 8)
(× task mapping composition)

(64, 8) 128
[(w /  8, w % 8),  (w /  8 + 16, w % 8),  
(w /  8 + 32, w % 8),  (w /  8 + 48, w % 8)]

8

repeat(4, 1) spatial(16, 8)

(1) Define Task 
Mapping task_map

(2) Iterate over tasks 
assigned to thread 

threadIdx.x

Assigned 
to 128 

threads

Each (i, k) 
is a task

Task Mapping Details

×

(3) Implement task (i, k)

Figure 8: Scheduling the cooperative loading with declarative loop-oriented scheduling and task-mapping programming para-
digm. In declarative loop-oriented scheduling, developers apply a series of declarative scheduling primitives to an automatically
generated program to transform the tensor program into a more efficient one. Instead of employing declarative primitives, the
task-mapping programming paradigm allows developers to directly embed the scheduling in the tensor program and enables a
larger spectrum of optimizations compared with loop-oriented scheduling.

(tile size is not required to divide loop length) to tune the tensor
program in small hardware-centric schedule space (Section 4.3) and
significantly reduces the tuning time.

4.1 Task-Mapping Programming Paradigm
Loop-oriented scheduling manipulates a tensor program through
declarative loop-oriented scheduling primitives to simplify the ten-
sor programming, but at the same time prevents fine-grained ma-
nipulations and optimizations.

We observe that the goal of loop-oriented scheduling primitives
is either to (1) assign the computations to parallel processing units
(e.g., threads or warps), or (2) specify the execution order of the
computations assigned to each processing unit. Figure 8 shows the
cooperative loading of the matrix A in the matrix multiplication as
an example (we omitted the block offset and only show the load-
ing of the matrix A for simplicity). In this example, loop-oriented
scheduling applies three primitives (i.e., loop split, fuse, and bind)
to assign the loading of 512 (64x8) elements to 128 threads, and
each thread loads 4 elements in order.

Instead of scheduling through applying declarative primitives,
we propose to embed the scheduling into tensor programs and use
dedicated mappings, called task mappings, to define the computa-
tions assignment and ordering directly in the program. We use the
example in Figure 8 to demonstrate how to use task mapping to
fulfill the desired scheduling. In step (1), a task mapping is first
defined, which assigns 64x8 tasks to 128 threads. Then, in step (2),
each task (i, k) assigned to a thread is iterated by calling the task
mapping with thread index threadIdx.x. Finally, in step (3), the
task is implemented using its index (i, k). The three steps decou-
ple the task assignment and the implementation of every single

task, greatly simplifying tensor program developments. Compared
with declarative loop-oriented scheduling, it schedules directly in
the tensor program and allows more fine-grained optimizations.
Besides this, it also allows developers to fall back on some dimen-
sions to traditional loops to implement optimizations such as double
buffering [32]. Since task mapping is the key component used in
the three steps, we name our new approach to construct tensor
programs – a task-mapping programming paradigm.

The taskmapping defined in step (1) is derived from taskmapping
composition of two basic task mappings (i.e., repeat(4, 1) and
spatial(16, 8)). The table in Figure 8 gives the details of all
appeared task mappings. The formal definition of task mapping
and its composition are given in Section 5.1.

The proposed paradigm simplifies tensor program development
without sacrificing optimization expressiveness. Beyond the sched-
uling of a single operator, it is also important to schedule a fused
sub-graph as operator fusion could greatly reduce the memory
traffic to accelerate the end-to-end DNN execution [9, 18, 30].

4.2 Post-Scheduling Fusion
We propose to decompose the scheduling of a fused sub-graph into
two steps, as shown in Figure 9. In step 1 , we select the anchor
operator as TVM [9] does, but only schedule the anchor operator
alone. In step 2 , we fuse the surrounding operators to the scheduled
tensor program of the anchor operator automatically. With this
decoupling, the scheduling of the anchor operator does not need to
consider the whole sub-graph but only the implementation of itself,
which greatly reduces the engineering efforts required to a design
schedule template for sub-graph compared with AutoTVM [11].
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Figure 9: Two steps in post-scheduling fusion.

Because the fusion is done after we schedule the operator, we call
this approach post-scheduling fusion.

In post-scheduling fusion, the anchor operator can be fused with
operators before (as prologues) and after (as epilogues) it. We decide
if an operator is fusible based on its characteristics. If an operator
has no reduction computation, it is defined as injective and qualified
as a prologue operator. If an operator is injective and each element
in the input tensor contributes to a single element in the output
tensor, it is defined as bijective and qualified as an epilogue operator.
For example, all elementwise operators (e.g., addition, ReLU [3]) and
transform operators (e.g., reshape, transpose) are bijective operators
and are qualified as both prologue and epilogue operators. With
post-scheduling fusion, we can concentrate on the scheduling of a
single operator while supporting flexible and effective fusion.

4.3 Hardware-Centric Scheduling Space
Existing state-of-the-art schedulers [11, 65] adopt the input-centric
schedule space discussed in Section 3.3, in which the schedule
chooses the proper factors of loop extent as the split or tile factors,
which makes the schedule space unscalable and fails to cover the
optimal performance derived from tile sizes that are not proper
factors of loop extents. In addition to constructing a schedule space
based on input sizes, another approach is to design the schedule
space based on hardware, named hardware-centric schedule space.
Hardware-centric schedule space decouples the schedule space from
the input size by employing predicated loading (i.e., protecting the
data loading by checking if the accessing indices are in bounds),
and is widely used by kernel libraries [12, 26, 32].

With the proposed paradigm, we can provide a small but efficient
hardware-centric schedule space. Since the tile factors are based
on hardware resources (e.g., 64x64, 128x64, 16x32, etc), hardware-
centric schedule spaces are orders of magnitude smaller than input-
centric schedule spaces. For example, the schedule spacewe adopted
for matrix multiplication contains less than 200 schedules, which
is on average 105× smaller than a typical schedule space in Au-
toTVM [11]. Simply enumerating all schedules would be enough
and can be done within one minute of time.

5 HIDET: SYSTEM DESIGN
With the above key ideas, we design and implement a DNN compiler,
named Hidet. Figure 10 shows the overall design. Hidet firstly 1
imports a deep neural network from a widely used framework like

Computation Graph

Computation Graph

Operator Computation

Tensor Program 

Tensor Program CUDA Code

Lower & Optimize & Codegen

Task-Mapping-Oriented Programming Paradigm

Post-Scheduling Fusion

For each operator

2

3

4

5

Graph-level optimizations
Import models1

Section 5.1

Section 5.2

Figure 10: Overall design of Hidet.

PyTorch [41] or a model file in ONNX [5] format, and then 2 per-
forms graph-level optimizations, such as constant folding and par-
tition of fusible sub-graphs. After graph-level optimizations, each
anchor operator in the fusible sub-graphs is lowered for scheduling.
In Hidet, we 3 schedule the operator with task-mapping program-
ming paradigm (Section 5.1) into a tensor program and tune the
schedule in hardware-centric schedule space. Then, in step 4 , the
post-scheduling fusion (Section 5.2) is applied to fuse the scheduled
tensor program of the anchor operator with its surrounding opera-
tors automatically. 5 Finally, the fused tensor programs in Hidet’s
intermediate representation (IR) will be optimized and lowered. A
code generator will convert the lowered IR to CUDA kernels.

5.1 Task-Mapping Programming Paradigm
One key challenge when optimizing tensor programs for certain
hardware with parallel processing units (e.g., modern CPUs, GPUs,
and TPUs) is how to assign the independent (sub) tasks to the
parallel processing units. Using cooperative loading in Figure 8 as
an example, when loading the fragment of matrix A with shape
64x8 from global memory to shared memory, the 512 tasks are
assigned to the 128 threads in a thread block, and each thread is
assigned with 4 loading tasks. In this example, tasks are assigned
to parallel processing units, called workers, and the tasks assigned
to each worker will be executed in a specific order. In this section,
we will first formalize the task assignment and ordering as task
mapping, then introduce a binary operator on task mappings to
compose task mappings, and finally discuss the scheduling based
on task mappings.

5.1.1 Task Mapping. Formally, we define a worker set W𝑛 to be a
set containing 𝑛 workers with id from 0 to 𝑛 − 1:

W𝑛 = {0, 1, . . . , 𝑛 − 1}.

We also define a task domain T as

T = {(𝑡0, 𝑡1, . . . , 𝑡𝑚−1) | 0 ≤ 𝑡𝑖 < 𝑑𝑖 , 𝑡𝑖 ∈ Z},

to represent all tasks we are interested in, where 𝑚 is the task
dimension and d = (𝑑0, 𝑑1, . . . , 𝑑𝑚−1) is the task shape.
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spatial(2, 2)0 0

0 0

f(w) = [(w /  2, w % 2)]

(b)Assign each worker a task (4 workers in this case)

repeat(2, 2)0 1

2 3

f(w) = [(0, 0), (0, 1), (1, 0), (1, 1)]

(a)
Assign all tasks to a single worker

0 1

2 3
Task execution order Task Assignment

Legend

Figure 11: Examples of two basic kinds of task mappings:
repeat(2, 2) and spatial(2, 2). The number indicates the
execution order of the tasks assigned to the same task, while
the color indicates theworker towhich the taskwas assigned.

A task mapping 𝑓 is defined as a function that maps each worker
in the worker set to a list of tasks in the task domain, that is

𝑓 (𝑤) = [𝑡 (0) , 𝑡 (1) , . . . , 𝑡 (𝑞−1) ] .
where𝑤 ∈ W and 𝑡 (𝑖 ) ∈ T.

We find two basic task mappings that are very useful. The
repeat(d1, ..., dm) task mapping maps a grid of tasks (d1,
..., dm) to a single worker while the spatial(d1, ..., dm)
task mapping maps a grid of tasks (d1, ..., dm) to the same
number of workers and each worker only works on a single task.
Figure 11 shows two examples of these task mappings. Besides
them, Hidet also allows developers to define custom task mappings
by specifying the task shape, number of workers, and the mapping
function. Though all examples are in 2-dimension, the task mapping
can have an arbitrary number of task dimensions.

5.1.2 Task Mapping Composition. In the example of cooperative
loading, we can observe a hierarchical structure. The 64x8=512 tasks
can be partitioned into 4 groups of tasks and each group contains
16x8=128 tasks. The 128 tasks in each group are executed by 128
threads. If we take each task group as a macro-task and the 128
threads as a macro-worker, then task-mapping of the macro-tasks
to macro-workers is a task mapping that maps 4 tasks to a single
worker, denoted by repeat(4, 1). This example demonstrates that
all the tasks in a task mapping can be treated entirely as a single
task and all the workers can be treated entirely as a single worker
in another task mapping to create a composed task mapping.

We formalize this idea as follows. Let 𝑓1, 𝑓2 be two task mappings
with the same task dimension. Let 𝑛1, 𝑛2 be the number of workers
and d1, d2 be the task shapes of the two task mappings. We define
𝑓3 be the composed task mapping of 𝑓1 and 𝑓2 that has 𝑛1𝑛2 workers
and task shape d3 = d1 ⊙ d2.5 The mapping function is defined as

𝑓3 (𝑤) = [t1 ⊙ d2 + t2 | t1 ∈ 𝑓1 (⌊𝑤/𝑛2⌋), t2 ∈ 𝑓2 (𝑤 % 𝑛2)] .
The task mapping composition is denoted as 𝑓3 = 𝑓1 ◦ 𝑓2. Task
composition is associative, that is

(𝑓1 ◦ 𝑓2) ◦ 𝑓3 = 𝑓1 ◦ (𝑓2 ◦ 𝑓3),
holds for arbitrary task mappings 𝑓1, 𝑓2, 𝑓3.
5We use ⊙ to denote the element-wise multiplication.
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(d) repeat(1, 2) × repeat(2, 1) (c) spatial(2) × repeat(2) × spatial(2) 

(b) spatial(2, 2) × repeat(1, 3)

(a) repeat(1, 3) × spatial(2, 2)

Figure 12: Examples of task mapping composition. (a) and (b)
show that task mapping composition is not communicative.
(c) shows an example of composing three task mappings.
Because task mapping composition is associative, the order
of applying the composition does not matter. (d) shows an
example to assign tasks in column-major order.

Task mapping composition is a powerful tool to construct new
task mappings. Figure 12 gives some examples of task mapping
composition. Besides these examples, task mapping spatial(4,
2) * repeat(2, 2) * spatial(4, 8) * repeat(4, 4) is used
in matrix multiplication with CUDA Core [40]. They correspond
to the warps in a block (4x2), the number of repeats for each warp
(2x2), the layout of threads in a warp (4x8), and the number of C
elements each thread works on (4x4), respectively.

1
2
3
4
5
6
7
8
9

def block_mma(SmemA: fp32[64, 8], SmemB: fp32[8, 64],                
                              RegsC: fp32[4, 4, 4]):
      RegsA, RegsB = register fp32[4], fp32[4]

      task_map = spatial(2, 2) * repeat(2, 2) 

      worker_id = threadIdx.x /  32        # warp index

      for i, j in task_map(worker_id):
            wmma_load_a(&SmemA[i * 16, 0], RegsA)
            wmma_load_b(&SmemB[0, j * 16], RegsB)
            wmma_mma(RegsA, RegsB, RegsC[i, j])

Figure 13: Use task mapping to schedule warp-level tasks.

The task and worker in a task mapping are abstract concepts and
can be used to describe tasks and workers on different hierarchical
levels. For example, besides a single thread, a worker can also
represent a warp, a thread block, or a processing unit in other
accelerators. Figure 13 shows an example 6 with warps as workers

6In the example, register buffers RegsA, RegsB, and RegsC are local to each thread. The
primitive function wmma_load_a and wmma_load_b load data from shared memory to
registers. Primitive function wmma_mma conducts the MMA with given registers. The
RegsC has a special layout that would map (i, j) to (i%2, j%2). For simplicity, we do not
introduce the data layouts in Hidet.
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in a task mapping. It implements the block_mma function used
in the aforementioned matrix multiplication (see Figure 3 and 5).
In the example, we use a task mapping to assign a grid of 4 × 4
tasks to 4warps, and each warp takes 4warp-level matrix-multiply-
accumulate (MMA) task, whose corresponding assignment is shown
in step 3 of Figure 2.

Task mappings and their composition could greatly simplify the
tensor program writing as it employs dedicated mappings to define
the task assignment and ordering, and free developers from writing
complex loops and index calculations to achieve the same goal. We
call the tensor program writing paradigm based on task mappings
as task-mapping programming paradigm for tensor programs.

5.1.3 Scheduling Mechanisms. Based on the paradigm, we further
implement two scheduling mechanisms in Hidet: template-based
scheduling and rule-based scheduling. Inspired by Ansor [65] and
Halide-AutoScheduler [2], rule-based scheduling directly generates
the tensor program from one operator’s computation definition,
without any extra engineering efforts and is used for the majority of
operators in Hidet. On the other hand, rule-based scheduling might
not be able to generate an efficient-enough tensor program for key
operators such as matrix multiplication. Inspired by AutoTVM [11],
we also allow developers to provide a tensor program template
to support the efficient scheduling of these operators. Figure 14
illustrates the two scheduling mechanisms.

Operator Computation Definition

Rule-based SchedulingTemplate-based Scheduling

Schedule Template Provided?Yes No

Tensor Program in Task-Mapping-Oriented Paradigm

Traverse Computation DAG & 
Apply Translation Rules

Schedule Space

Program Template

Task Mappings
C

B

A

Compute

Reduce

Input

Computation 
DAG Example

Generate Task Mappings

Used in Template

Figure 14: Two Scheduling Mechanisms in Hidet.

Rule-based Scheduling generates the tensor program given the
computation definition automatically. It traverses the computation
definition in the form of a directed acyclic graph (DAG) and applies
pre-defined rules to translate each node in the DAG into a part of
the final tensor program. Because this mechanism does not require
developers to write a dedicated schedule template, it is widely used
in Hidet for the operators that do not include reduction, such as
reshape, transpose, slice, and all element-wise arithmetic operators.
On the other hand, for operators demanding extreme optimizations
like matrix multiplication, we use another scheduling mechanism,
named template-based scheduling.
Template-based Scheduling schedules the operator with the
given template. A schedule template is a tensor program writ-
ten with parameterized task mappings. Each schedule template is

equipped with a schedule space containing a collection of available
parameters for the parameterized task mappings, and the template
can be instantiated with an arbitrary choice from the schedule space.
Taking the matrix multiplication in Figure 5 and 13 as an example,
we could use different numbers of warps and repeat different num-
bers of times for each warp to implement the matrix multiplication.
These different choices form the schedule space for matrix multi-
plication. During scheduling, Hidet first enumerates the schedule
choice from the schedule space. Then the schedule choice is used to
create the task mappings for the given program template. Finally,
Hidet instantiates the template into a tensor program and measures
its performance. The schedule with the best performance is used.
We refer to the process as tuning.

Adding new operators to Hidet does not require high engi-
neering effort. Most operators in Hidet are scheduled automat-
ically through rule-based scheduling and are easy to add. The
computation-intensive operators like convolution and matrix multi-
plication usually require template-based scheduling for high perfor-
mance. The complexity of adding a new Hidet template is similar
to that of the AutoTVM [11] template.

5.2 Post-Scheduling Fusion
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def reverse(C: fp32[100], D: fp32[2, 50]):

      i = threadIdx.x

      D[i /  50, i % 50] = (C[99-i] * 2.0) * 3.0
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Figure 15: Example of Post-Scheduling Fusion.

To alleviate the complexity of scheduling a sub-graph as in Au-
toTVM, we propose to decouple the sub-graph scheduling into two
stages: (1) scheduling the anchor operator and (2) fusing the sched-
uled tensor program with surrounding operators. The decoupling
allows developers to focus on the scheduling of the anchor operator
instead of the whole sub-graph, and automates the fusion of the
scheduled tensor program with other operators in the sub-graph.
During tuning, the performance of fused tensor programs will be
used as the target to maximize, thus the decoupling does not hurt
the final performance.

Figure 15 shows an example of post-scheduling fusion. In step 1 ,
during the graph-level optimization stage, an optimization pass
partitions the computation graph into sub-graphs. Given the sub-
graph, in step 2 , a selected anchor operator will be scheduled
into a tensor program with one of the scheduling mechanisms in
Section 5.1.3. Finally, in step 3 , the remaining operators will be
fused into the scheduled program. These operators are classified
into two categories: prologue operators for each input tensor and
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epilogue operators for each output tensor. Each prologue operator
defines how each element access for the input tensor is computed,
and the epilogue operator defines how the output tensor elements
are furthermore computed and stored in the output of the fused
operator. In this example, the access of A[99 - i] will be replaced
by C[99 - i] * 2.0, and the 𝑖-th element of output tensor is
furthermore computed (i.e., multiply by 3.0) and stored to the
fused output tensor D with indices (i / 50, i % 50).

The post-scheduling fusion simplifies the operator fusion. It also
allows us to reuse existing highly optimized operators (e.g., ma-
trix multiplication) to support new operators (e.g., convolution). In
Hidet, we can implement the convolution operators as four opera-
tors with img2col algorithm [8], one of which is matrix multiplica-
tion and the other three are simple transform operators. With post-
scheduling fusion, we fuse the other three operators into a matrix
multiplication and reuse all optimizations (e.g., parallel reduction
on k dimension [32]) for matrix multiplications to convolutions.

6 EVALUATION
6.1 Experimental Setup
Implementation.We implement Hidet from scratch with ∼20K
lines of code in Python and C++. Two levels of IR are used in Hidet:
graph-level IR to represent the computation graph of DNN models
and tensor-level IR to represent tensor programs with schedules.
Hidet lowers the tensor program written with task mappings to
CUDA C code and compiles it with the CUDA compiler. Notably,
we only implement two efficient schedule templates for matrix mul-
tiplication and reduction operators (e.g, sum reduction) to cover all
operators in evaluated models. Most operators are either scheduled
by the rule-based scheduling mechanism or converted to matrix
multiplication to reuse existing templates (e.g., convolutions).
Platform.We conduct experiments on a server equipped with a 16-
core 24-thread Intel i9-12900K CPU (with hyper-threading enabled),
64 GiB DRAM, and one NVIDIA RTX 3090 GPU. The server has
installed the Linux distribution Ubuntu LTS 20.04 with NVIDIA
driver 510.73.08 and CUDA 11.6.
Workloads. We benchmark on a wide range of representative net-
works to demonstrate the optimization generality of Hidet. ResNet-
50 [25] is one of the most commonly used CNNs for image classi-
fication. Inception-V3 [50] is a CNN that employs multiple paths
of convolutions with different kernel sizes. MobileNet-V2 [45] is a
lightweight CNN based on separable convolutions. Bert [16] is a
widely-used transformer-based natural language processing (NLP)
model. GPT-2 [42] is an NLP model targeting sequence-to-sequence
tasks such as natural language translation and question answering.
We use 128 as the sequence length for the two language mod-
els throughout the experiments. We adopt the model implementa-
tions in torchvision and transformers packages and export them to
ONNX [5] format for evaluation.

6.2 End-to-End Evaluation
We evaluate all workloads on Hidet against PyTorch [41] 1.11, Onnx
Runtime [15] 1.11.1, AutoTVM [11] and Ansor [65] in TVM [9]
0.9.dev with commit c07a46327. PyTorch is a widely used DNN
framework. Onnx Runtime is a high-performance inference en-
gine. Both of them leverage high performance kernel libraries

cuDNN [12] and cuBLAS [26]. AutoTVM and Ansor are two state-
of-the-art schedulers based on loop-oriented scheduling and input-
centric tuning spaces. We set the number of tuning trials in Au-
toTVM and Ansor to 1000 and 800, respectively, as suggested in
their paper and official documentation.
Performance. Figure 16 shows the results of end-to-end inference
latency with a single batch. Hidet outperforms all baselines on most
models by up to 1.48×, and on average by 1.22×. This is because
Hidet is able to automatically fuse sub-graph, tune the schedule
for given input size (vs. PyTorch and Onnx Runtime), and express
more optimizations such as double buffering [32] (vs. AutoTVM and
Ansor). One exception is Ansor onMobileNetV2, as Ansor could find
a better schedule for depthwise convolutions. We can implement
similar schedules in Hidet, and we leave such implementations to
future work. In addition, we note that AutoTVM performs worse
on both Bert and GPT-2 models with 27ms and 41ms, respectively.
This is because AutoTVM’s schedule templates for workloads in
these two models lack optimizations.
Tuning Cost. We compare the tuning cost (i.e., elapsed time in
the tuning process) of AutoTVM, Ansor, and Hidet in Figure 17.
Hidet reduces the tuning cost by 11× and 20× compared with Ansor
and AutoTVM, respectively. This is because Hidet adopts a small
(e.g., 180 schedules in matrix multiplication) but efficient schedule
space with the proposed paradigm. As a result, Hidet only needs
minutes to exhaustively enumerate all candidates. On the other
hand, AutoTVM [11] and Ansor [65] adopt schedule spaces with 105
to 108 candidates, which prevents them from finding the optimal
schedule in their space in a short time, even equipped with a cost
model. Note that although AutoTVM only spends 2 minutes for
Bert and GPT-2 due to their small schedule spaces with less than 20
schedules, the schedule spaces are ineffective and can not achieve
competitive performance (Figure 16).

6.3 Case Studies
In this subsection, we conduct several case studies to further de-
mystify the effectiveness of Hidet.

6.3.1 Schedule Space Comparison. To compare the efficiency of
three schedule spaces adopted by AutoTVM, Ansor, and Hidet, we
depict the latency distribution of schedules in the three schedule
spaces in Figure 18. The benchmark workload is a convolution in
ResNet50 with batch size 1, input image size 28x28, input channels
256, kernel size 3, padding 1, and stride 2. Because the schedule
spaces of AutoTVM and Ansor are too large, we take the 1000 and
800 schedules from the tuning process of AutoTVM and Ansor,
respectively, as the samples in their schedule spaces. We compare
them with the entire space with only 180 schedules in Hidet sched-
ule space. The figure shows that most schedules covered by Hidet
schedule space have superior performance (latency < 73`s) than
those in spaces adopted by AutoTVM and Ansor thanks to the better
expressiveness of the proposed paradigm.

6.3.2 Performance Sensitivity over Input Sizes. The quality of the
final schedule derived from AutoTVM and Ansor is sensitive to
the input size due to their input-centric schedule spaces. Even a
small change in the input size would result in a large performance
difference. To compare the performance sensitivity over input sizes,
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Figure 16: End-to-end comparison between state-of-the-art DNN inference frameworks and compilers with Hidet.
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we benchmark matrix multiplications with consecutive input sizes.
Figure 19 shows that the performance of AutoTVM and Ansor fluc-
tuates significantly. Even worse, for a prime number input size (e.g.,
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Figure 20: Comparison on batch size 1, 4, and 8 of ResNet50.
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Figure 21: Comparison of Onnx Runtime, Ansor, and Hidet
on the Conv2d-Bn-ReLU sub-graphs in ResNet50.

2039), both schedulers failed to find a valid schedule. On the other
hand, with the hardware-centric schedule space, Hidet achieves
consistent performance on these input sizes.

6.3.3 Evaluation on Different Batch Sizes. Figure 20 depicts the
latency of ResNet50 with different batch sizes. When batch size is
small (1 and 4), AutoTVM and Ansor outperform Onnx Runtime as
they can find schedules that utilize the GPU computation resources
well (e.g., enough thread blocks to saturate all SMs), while kernel
libraries do not. At larger batch sizes (e.g., 8), we observe that
although AutoTVM and Ansor can still find schedules that saturate
all SMs, they cannot outperformOnnx Runtime, because the latency
of each thread block is longer than Onnx Runtime’s, due to the lack
of important optimizations such as double buffering [32]. On the
other hand, Hidet outperforms all of them as Hidet could perform
well on both aspects (i.e., enough and efficient thread blocks).

6.3.4 Post-Scheduling Fusion Evaluation. With post-scheduling fu-
sion, we can implement an operator with a highly optimized sched-
ule template, and composite new operators with pre-implemented,
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Figure 22: Comparison of TensorRT and Hidet.

highly optimized operators to save engineering efforts. For exam-
ple, in Hidet, we implement convolution through matrix multi-
plication, namely implicit general matrix multiplication (GEMM)
convolution, which is also known as img2col [8] algorithm. With
post-scheduling fusion, we are able to fuse the additional required
operators in img2col into the matrix multiplication automatically
and reuse the optimizations we implemented for it (e.g., parallel re-
duction on k dimension [32]). The implicit GEMM convolution with
parallel k reduction allows Hidet’s generated kernels to saturate the
GPU computation resources and outperforms the existing kernel
libraries and DNN compilers. Figure 21 shows the performance of
the Conv-Bn-ReLU sub-graphs in ResNet50 among Onnx Runtime,
Ansor, and Hidet. Hidet outperforms Onnx Runtime and Ansor on
most convolutions as the convolution can also parallelize on the
reduction dimensions (e.g., input channels, and kernel sizes).

6.3.5 Comparison with TensorRT. We also compare Hidet with
TensorRT [27] 8.4.1.5, a high-performance deep learning inference
engine provided by NVIDIA. TensorRT applied both graph-level
and operator-level optimizations. Figure 22 shows the comparison
of TensorRT and Hidet. Hidet outperforms TensorRT on the three
CNNs because Hidet is able to tune for the given input sizes and
fuse operators automatically according to their mathematical def-
inition. On the other hand, TensorRT outperforms Hidet on the
transformer [55] networks such as Bert and GPT-2. Since TensorRT
is close-sourced, we speculate, by interpreting its optimization log,
that TensorRT recognizes self-attention layers in transformer mod-
els and applies dedicated optimizations due to the popularity of
these models. On the other hand, Hidet only has two schedule
templates to cover all operators in benchmarked networks.

7 RELATEDWORK
Many existing DL compilers adopt loop-oriented scheduling primi-
tives [9, 43] and establish auto-tuning frameworks on top of them [2,
11, 46, 54, 57, 58, 63, 65–67] with input-centric schedule spaces. In
contrast, Hidet leverages task-mapping programming paradigm
with hardware-centric schedule spaces, so that it is able to achieve
better performance with a much shorter tuning time. In addition
to loop-oriented scheduling, there are more approaches to opti-
mize a tensor program. Deep learning frameworks such as Py-
Torch [41] and TensorFlow [1] leverage off-the-shelf kernel libraries
(e.g., cuDNN [12] and cuBLAS [26]) as well as hand-crafted kernels
to cover widely used operators. CUTLASS [32] is an open C++ tem-
plate library with efficient matrix multiplication kernels on CUDA.
Tiramisu [4] andAKG [62] employ the polyhedralmodel to schedule

the tensor programs. Roller [69] constructs the tensor programwith
a bottom-up approach and aligns the tile sizes with hardware spec-
ifications. AI-Template [59] employs source-code level templates
to construct tensor programs, which supports more fine-grained
optimizations but sacrifices the flexibility of program transform.
TVM community also noticed the limited expressiveness problem
of the existing declarative loop-oriented scheduling mechanism.
TensorIR [22], a concurrent work with Hidet, is recently proposed
to allow developers to directly write tensor programs instead of ap-
plying a series of declarative primitives to the auto-generated tensor
program. Moreover, XLA [44] is a domain-specific compiler for lin-
ear algebra. FreeTensor [51] and CoRa [20] study the compilation for
irregular or ragged tensor programs. AStitch [68] and Apollo [61]
study the fusion of memory-intensive kernels to reduce memory
consumption. Fireiron [24] proposes a data-movement-aware sched-
uling language for GPUs. Triton [52] proposes to write tensor pro-
grams by taking tile as the basic data type and thread block as the
main parallel processing unit. Nimble [47], DISC [70], Cortex [21],
and DietCode [63] study the compilation of dynamic models, which
is also orthogonal with Hidet. Besides optimizing every single op-
erator for DNN inference, Rammer [38] and IOS [18] propose to
parallelize independent operators in a network. TASO [30], Fang
et al. [19], TENSAT [60], and PET [56] apply auto-generated rewrit-
ing rules to optimize DNN at the graph level. Checkmate [29], Chen
et al. [10], Echo [64], and DTR [33] are proposed to reduce mem-
ory footprint. These works are orthogonal to Hidet, and can be
used to enhance different aspects of Hidet (e.g., the graph-level
optimizations, memory consumption, and dynamic-shape support).

8 DISCUSSION
Optimization Expressiveness. The accelerators (e.g., GPUs and
TPUs) usually have a hierarchical memory system and vector- or
tensor-based computation engines. Both demand dedicated opti-
mizations to achieve peak performance, and these optimizations are
usually hard to be expressed through a series of loop transforma-
tions. The double buffering example we discussed in this paper is a
good example of such a challenge. Instead of relying on a declara-
tive style scheduling mechanism, Hidet proposes to directly express
the task assignment and ordering with task mapping in a tensor
program, which greatly increases the expressiveness of Hidet while
reducing the complexity of tensor program writing.

Support More Hardware. Although we only focus on GPUs in
this work, the concept of task mapping is general and can be used
to describe the task assignment and ordering for other processors.
The worker in a task mapping can be (1) iterations in a loop for a
single-core CPU, (2) CPU threads for a multi-core CPU, (3) threads,
warps, or thread blocks for a GPU, and (4) parallel processing units
in other accelerators. And the tasks of a task mapping could be
arbitrary indexed, homogeneous, and parallelizable operations.

Future Work. We plan to support CPU and other accelerators
(e.g., Amazon Inferentia and Trainium) in the future. Besides this,
we also plan to support training. Due to the long tuning time of
TVM, it is hard to be directly used for accelerating training. Thanks
to the hardware-centric schedule space adopted byHidet, the tuning
time has greatly been reduced for Hidet, which makes it possible
to build a training system based on Hidet.
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9 CONCLUSION
We observe that the state-of-the-art DNN compilers based on loop-
oriented scheduling cannot express important optimizations that
require fine-grainedmanipulation of the tensor program. To address
this limitation, we propose task-mapping programming paradigm, a
new paradigm to write and schedule tensor programs that simplifies
tensor program writing and scheduling without sacrificing the
ability to express optimizations as in kernel libraries. Based on
this paradigm, we implemented a new DNN inference framework
called Hidet. Experiments show that Hidet achieves up to 1.48×
speedup (1.22× on average), compared with state-of-the-art DNN
inference frameworks (e.g., Onnx Runtime) and compilers (e.g.,
TVM equipped with AutoTVM and Ansor). Hidet also reduces 11×
tuning cost compared with Ansor.
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A ARTIFACT APPENDIX
A.1 Abstract
This appendix helps readers to reproduce all experiments in the
evaluation section via the Hidet artifact [17]. In Section 6, there
are 6 experiments (one end to end experiment and 5 case studies).
These experiments compare Hidet with other DNN frameworks
and compilers on representative DNN models from the perspective
of execution latency, optimization time, schedule space, input sen-
sitivity, and different batch sizes. In the public artifact, we provide
scripts to launch the 6 experiments automatically. With the hard-
ware and software described in Section A.3.2 and A.3.3, the artifact
should reproduce all experimental results in the evaluation section.

A.2 Artifact Checklist
• Compilation: NVIDIA CUDA compiler (nvcc).
• Model: ResNet50, InceptionV3, MobileNetV2, Bert, and GPT-2
• Run-time environment: Linux Ubuntu 20.04+
• Hardware: A workstation equipped with Intel Core i9-12900K,
NVIDIA RTX 3090, and 64 GiB RAM.

• Metrics: End-to-end inference latency and auto-tuning time.
• How much disk space required (approximately)?: 2 GiB
• How much time is needed to prepare workflow (approxi-
mately)?: 2 hours.

• How much time is needed to complete experiments (approxi-
mately)?: 60 hours. Most of the time (about 50 hours) will be used
for model tuning by baselines AutoTVM and Ansor.

• Publicly available?: Yes

• Code licenses (if publicly available)?: Apache 2.0.
• Archived (provide DOI)?: 10.5281/zenodo.7429879

A.3 Description
A.3.1 How to access. The source code can be downloaded from
either the Zenodo archive (https://doi.org/10.5281/zenodo.7429879) or
GitHub repository (https://github.com/yaoyaoding/hidet-artifacts).

A.3.2 Hardware dependencies. To get the exact numbers in the
evaluation, the exact CPU and GPU is required: Intel Core i9-12900K
CPU and NVIDIA RTX 3090 GPU. To functionally run the experi-
ment, the only requirement is a modern NVIDIA GPU that supports
CUDA 11.6+.

A.3.3 Software dependencies. The artifact requires:
• NVIDIA Driver 510.73.08
• NVIDIA CUDA Toolkit 11.6 [39]
• NVIDIA kernel library cuDNN 8.4 [12]
• Package torch 1.11 (PyTorch [41])
• Package torchvision 0.12 (CNN models [25, 45, 50])
• Package transformers 4.19.2 (NLP models [16, 42])
• Package onnxruntime-gpu 1.11.1 (ONNX Runtime [15])
• Package nvidia-tensorrt 8.2.5.1 (Tensor RT [27])
• Apache TVM 0.9.dev with commit c07a46327 [9]

A.3.4 Models. We conduct the experiments with five DNNmodels:
ResNet50 [25], InceptionV3 [50], MobileNetV2 [45], Bert [16], and
GPT-3 [42]. The three convolution networks are from torchvision
model zoo, and the two transformer models are from transformers
package. All of them will be automatically downloaded.

A.4 Installation
Download the source code or clone the git repository in sectionA.3.1.
Follow the commands of the installation section in README.md file
under the root of source code directory to build and install hidet
and baselines.

A.5 Experiment Workflow
There are 6 sub-directories under hidet/artifacts directory start-
ing with 0, 1, 2, 3, 4, and 5, corresponding the 6 experiments in
Section 6.2, 6.3.1, 6.3.2, 6.3.3, 6.3.4, and 6.3.5. Each sub-directory
contains a python script main.py that can be directly launched to
conduct corresponding experiment.

A.6 Evaluation and Expected Results
Each experiment script would have multiple outputs like
BatchSize Model Executor Latency Std

1 resnet50 hidet 1.329 0.000

that represents the average latency of one executor on a model
with a specific batch size in multiple runs. This example shows that
it takes Hidet 1.329 ms on average (with standard deviation 0.000
ms) to run a single batch of ResNet50 [25] model. Some column
are omitted here for simplicity. When conducting the experiments
with the hardware and software described in Section A.3.2 and
Section A.3.3, the artifact should reproduce all experimental results
in each evaluation section.
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