

Agent Based Models using TensorFlow

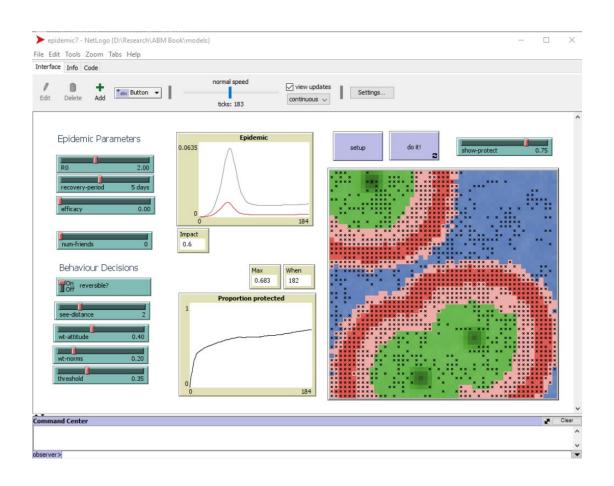
Sharan Agrawal

Large Scale Data Processing and Optimization

Background

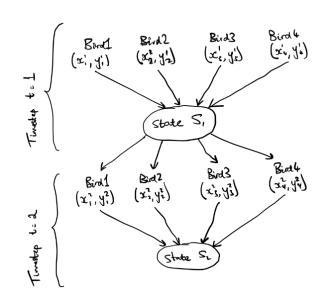
- Agent Based Models (ABMs) simulate the interactions many autonomous agents in an environment and study the complex emergent behaviours that arise
- Very useful tool when modelling complex systems that are too difficult to model overall, or where complex behaviours result from non-equilibrium interactions between agents
- Recent increases in computation power has led to a surge in popularity, widely used across fields like economics, biology, ecology, epidemiology
- Example: Game of Life by Conway
- Technical challenges: scalability, scheduling, parallelization, synchronization
- Current approaches predominantly model each agent or groups of agents within one process and use MPI to interact with each other
- Systems like FLAME[1] use GPUs to speed up parts of the process

Background



Dataflow ABMs

- Let's look at a particular subset of ABM simulations. For now assume a single type of agent. For a simulation running over time t=0, 1, 2...:
 - The state of every agent, S_t ∈ S, determined at t − 1 and modified to S'_t at the end of t
 - A set of messages $\mathcal{M}_t \in \mathbb{M}$ that are determined at t-1, and modified to \mathcal{M}_t' at the end of t
 - A set of operations/actions A_t: S × M → S × M which operate on the current state and messages and produce a new set of messages and states
- This turns the ABMs into a dataflow problem.
 We make the following statements:
 - 1. Environment is a function of global state
 - 2. State flows between each agent at every timestep, and is produced by agents
 - 3. Agent functions are the nodes
- Classic dataflow problem!



How can we address key computational issues?

Scale:

- Limits on ABM size now not imposed by message passing between agents
- Can leverage extensive literature on scaling large scale dataflow by distributing computation and flow across network of distributed devices

Scheduling:

- The previous definition only allows synchronous updates with every agent forced to produce an update at every timestep
- Can leverage literature on how to deal with micro-stragglers
- Systems like NAIAD allow us to carefully design synchronous and asynchronous execution concepts in dataflow graph

Why would we do this in TensorFlow?

- Take advantage of TensorFlow's immense framework for orchestration of computation and messaging across many devices
 - Both its configurability and ability to determine hardware to run on automatically.
 - Also extensive literature on TensorFlow operation device placement, graph optimizers and compilers, etc.
- Systems like FLAME handle this with custom C code using MPI
 - Much harder for this orchestration and configurability to be usable by noncomputer scientists.

What do we need for fully working version?

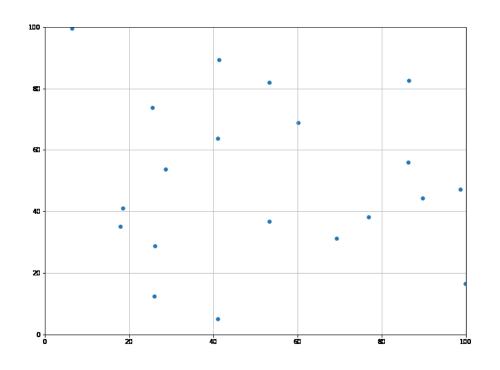
- A framework implementing Dataflow ABMs would need to do 3 things:
- Define allow definitions of ABMs that can be converted into DAG representations, could potentially use xparser for this
- 2. Collapse collapse common state into a series of tensors rather than individual edges, and collapse actions on those tensors into single vertices
- 3. Orchestrate/observe/execute execute the collapsed graph, let TensorFlow orchestrate across devices or have your own implementation, and observe changes in state variables

Concrete Steps Needed

- 1. Implement the 3 Stages above for a single agent type, constant number of agents, and a single datatype of state (e.g. int32, etc.)
- 2. Extend framework to multiple datatypes in state
- 3. Extend framework to multiple agent types and single datatype in state
- 4. Extend framework to multiple agents and multiple datatypes
- 5. Extend to varying number of agents
- Add messages (transient data that aren't stored in state but modify agent behaviour)
- 7. Add concepts of timely dataflow to reduce assumptions around synchronous and orderless execution

Project Scope

- Goal: implement Proof of Concept, and then Step 1
- Reach goal: benchmark vs. existing frameworks using circles benchmark
- Achievements so far:
 - POC done for toy models
 - "Bird Flocking" →
 - Batched FRNN completed



Bird Flocking Example

Example:

We can look at the Bird Flocking problem to see how this defines some ABMs:

Here, we have one type of agent, a Bird that contains its location in \mathbb{R}^2 , with 2 variables, x and y. At each step, each bird determines its velocity v_x, v_y and then updates it's x, y accordingly. It determines velocities by looking at the center of the flock and moving towards it, with some noise ϵ and max speed v_{max} . Say we have N agents, with positions at time t as $\mathcal{P} = \left\{ \left(x_i^j \ y_i^j \right) \ \middle| \ i = 1, \dots, N, \ T = 0, \dots M \right\}$ then our update rules at time t = j would be:

$$\begin{split} x_{mean}^{j} &= \frac{1}{N} \sum_{i=1}^{N} x_{i}^{j} \qquad y_{mean}^{j} = \frac{1}{N} \sum_{i=1}^{N} y_{i}^{j} \\ v_{x_{i}}^{j} &= \max \left(x_{mean}^{j} - x_{i}^{j}, v_{max} \right) + \epsilon_{i}^{j} \qquad v_{y_{i}}^{j} = \max \left(y_{mean}^{j} - y_{i}^{j}, v_{max} \right) + \epsilon_{i}^{j} \\ x_{i}^{j+1} &= x_{i}^{j} + v_{x_{i}}^{j} \qquad y_{i}^{j+i} = y_{i}^{j} + v_{y_{i}}^{j} \end{split}$$

Note this system doesn't have any messages, only state and actions, since the messages are the state itself.