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Emukit: Emulation of physical 
processes with Emukit

 Modular framework for active learning proposed by Paleyes, Andrei, 
et al. 2021.

 A broad range of contracts for: Bayesian Optimisation, experimental 
design, sensitivity analysis, quadrature, and multi-fidelity emulation

 Model-agnostic backend
 Related active learning frameworks:

 Focused on single tasks (e.g., BayesOpt)

 Tightly-coupled with a modelling framework

 Case studies (e.g., BO for quantum computer memory)
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Emukit Contract
Reference: github.com/EmuKit/emukit



Proposed Open-Source 
Contributions
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1. On Bayesian 
Optimisation
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 Emukit supports a deluge of acquisition 
functions

Proposal
 Thompson Sampling acquisition function
 New contract for the surrogate Model
 Thompson Sampling requires a function 

sample from the prior

Table from Zhang, Mimi, et al. 2021



Thompson Sampling Acquisition 6

Example taken from https://num.pyro.ai/en/stable/examples/thompson_sampling.html
Full paper citation: Bingham, Eli, et al. 2019 

https://num.pyro.ai/en/stable/examples/thompson_sampling.html


TS-BO: Motivation

 Thompson Sampling Bayesian Optimization (TS-BO) can be 
extended to perform evaluations in parallel

 A set of “n” sequential evaluations are equivalent to “n” 
(a)synchronous evaluations across “T” threads/devices.

 Proof: Kandasamy, Kirthevasan, et al. 2018 

 Parallel Bayesian Optimisation with Emukit
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2. On Experimental Design

Uncertainty Sampling
 Select most ‘uncertain’ data point 

Integrated Variance Reduction 
 Expected Error Reduction 
 Evaluate ‘x’ if it minimises the future variance
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Density 
Weighting
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 High-variance samples may 
be isolated 

 Sample from populated 
regions 

 dw(x) = us(x) × density(x)

Solutions
 Kernel density 
 Approximations (Settles, Burr, 

2009)
Example decision boundary for classification task.

Bayesian Experimental Design



Research Contributions
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An extended analysis of Emukit’s
active learning

 An extended analysis with respect to existing methods in Emukit
 Comparison with BoTorch on Bayesian Optimisation

Extensions
 Hyper-parameter tuning case study
 Parallel TS - Bayesian Optimisation 

Future vision
 Original proposal: Multi-objective Bayesian Optimisation (MOBO) 
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Progress

 Investigate Emukit’s open source codebase 
 Devise a plan for practical contributions 
 Design a research methodology 
 Engineer the proposed contributions in Emukit
 Evaluate the methods based on the methodology
 Case study extension
 Pull request
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Thank you!
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Appendix: Emukit Workflow

1. while stop condition is False:

2. acquire sample ‘x’ based on emulator 

3. run experiment with sample ‘x’

4. update the emulator with the observed behaviour

User defines the business problem and injects the model into the Active 
Learning loop
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