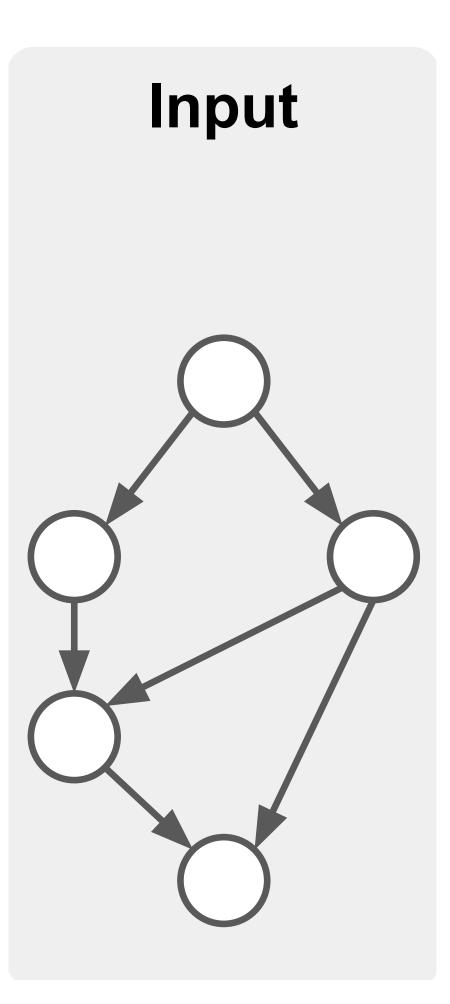
REGAL: Transfer Learning For Fast Optimization of Computation Graphs

Aditya Paliwal, Felix Gimeno, Vinod Nair, Yujia Li, Miles Lubin, Pushmeet Kohli, Oriol Vinyals

Shuntian Liu 23/11/2022

Optimising Computation Graphs

- Device placement
- Scheduling
- NP-hard

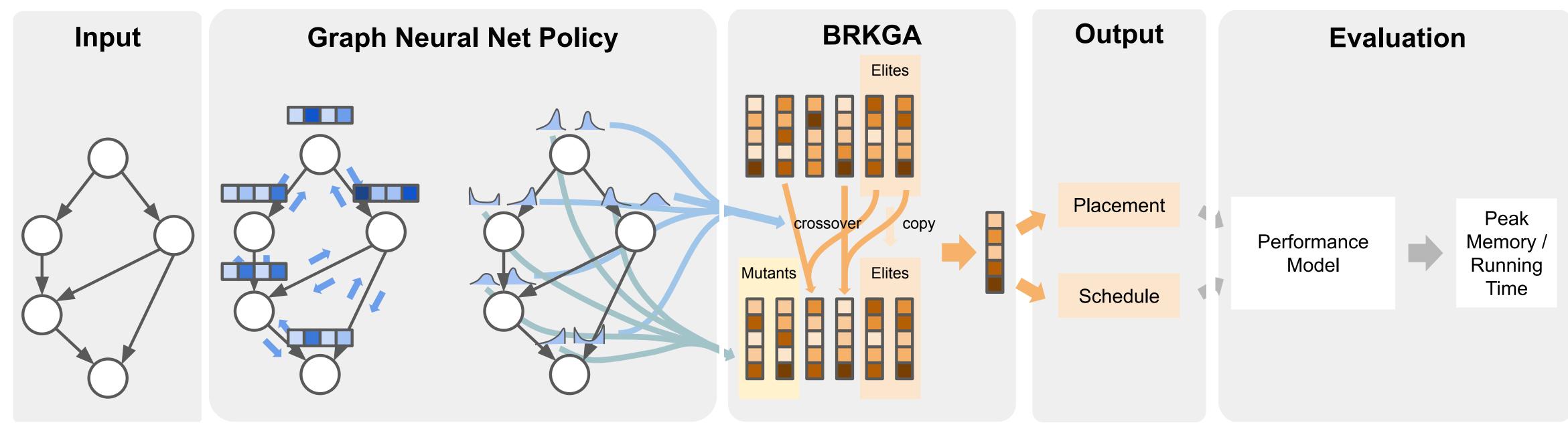


Motivation & Related Work

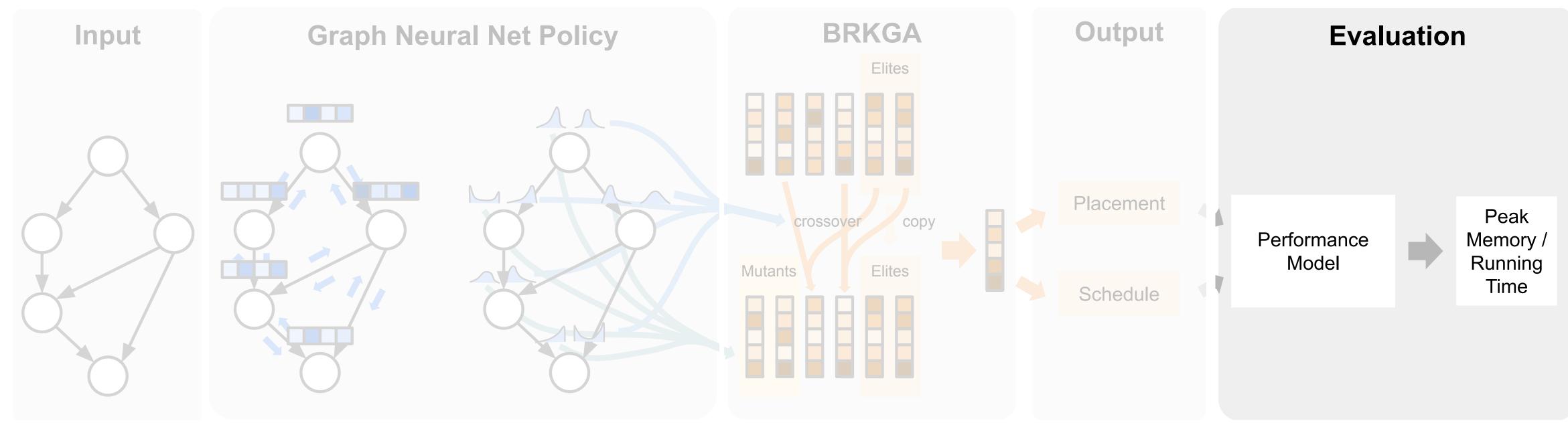
- AutoTVM
 - No transfer across models
- Learning to super optimise programs
 - Handcrafted instance & small graphs
- Parallel task scheduling
 - Traditionally not learning-based
- Little attempt to learn to transfer to new graphs on a large scale

REGAL: Transfer Learning For Fast Optimization of Computation Graphs

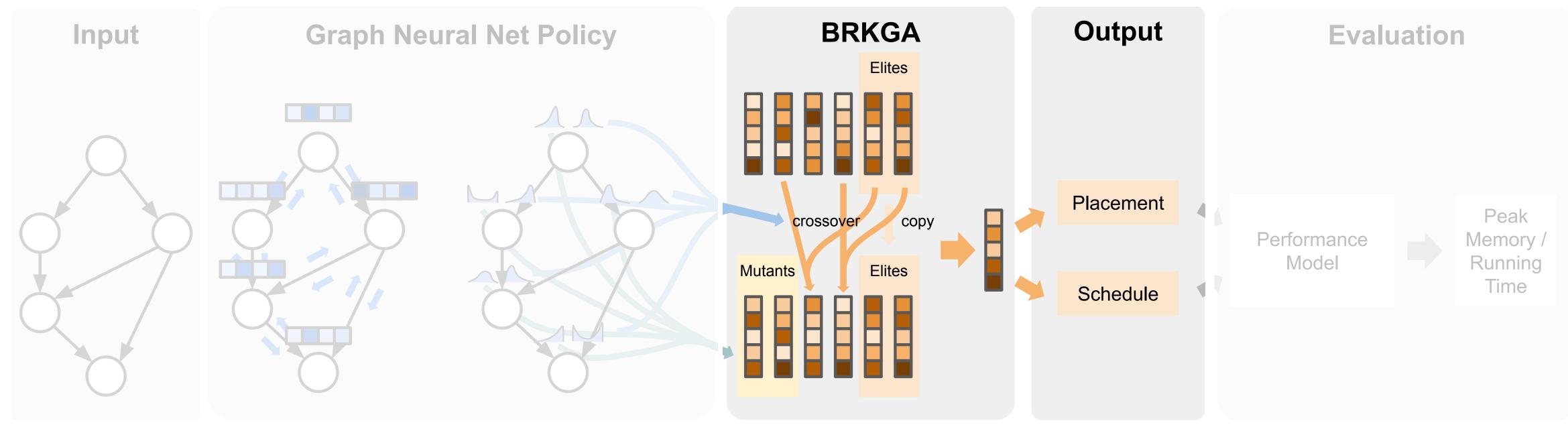
Pipeline



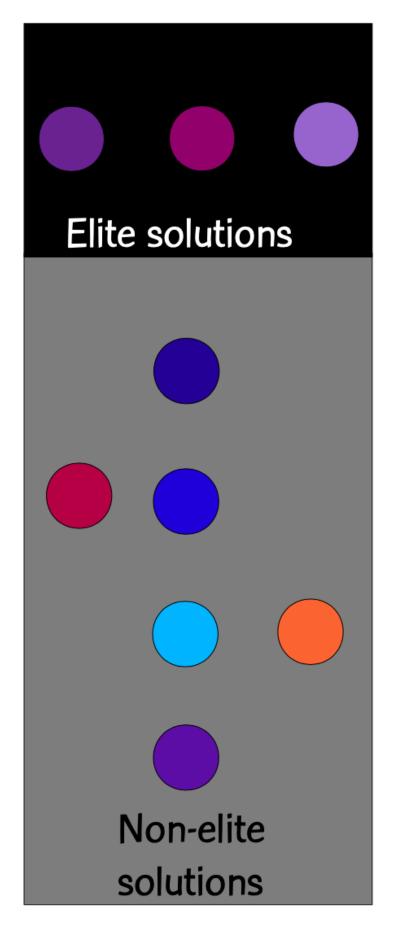
Objective Peak memory minimisation



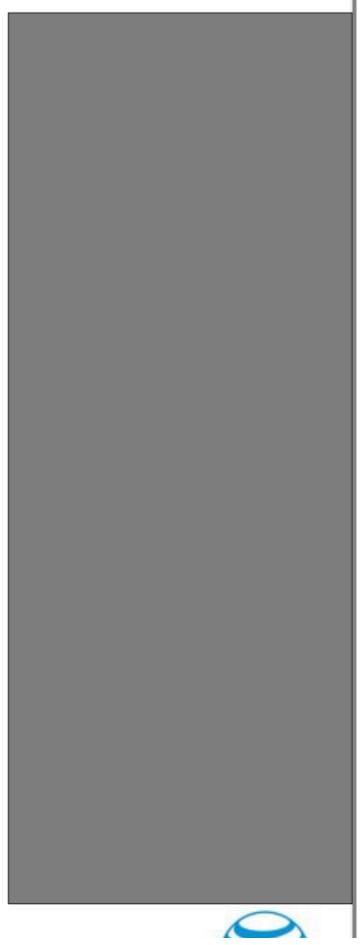
BRKGA Biased random key genetic algorithm



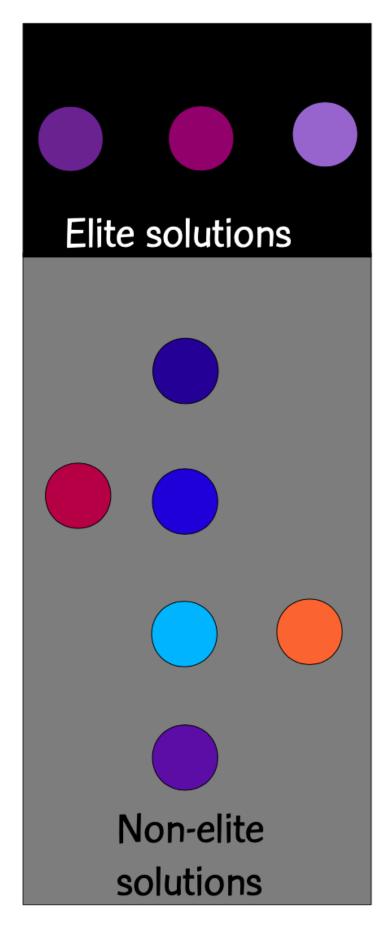
Population K



Population K+1



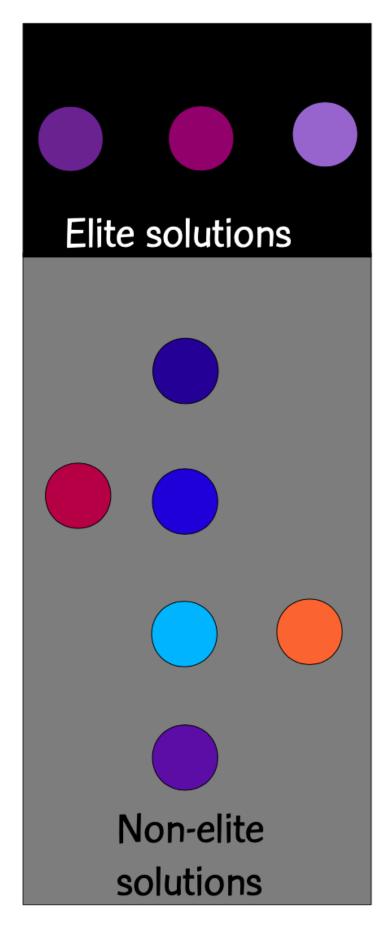
Population K

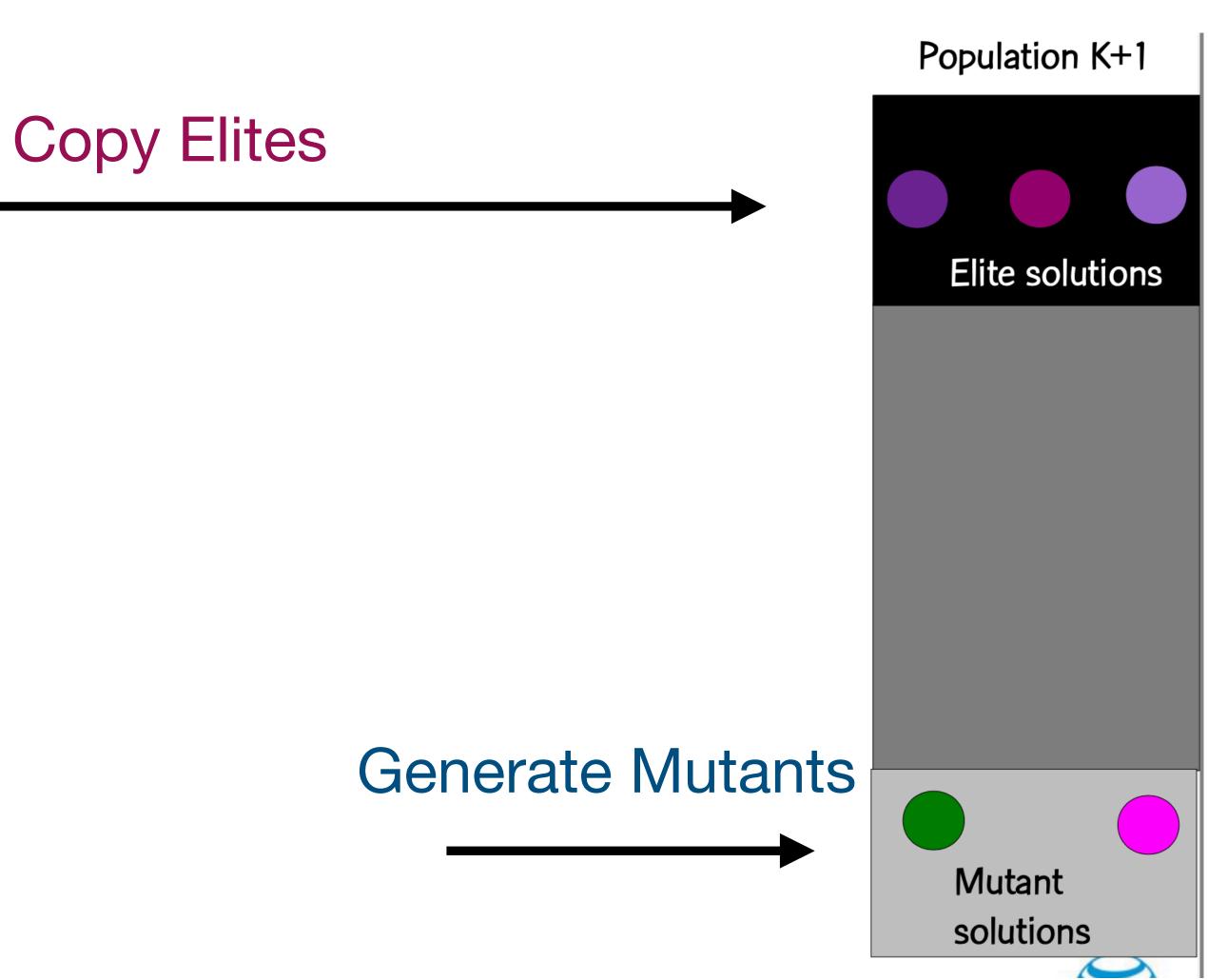


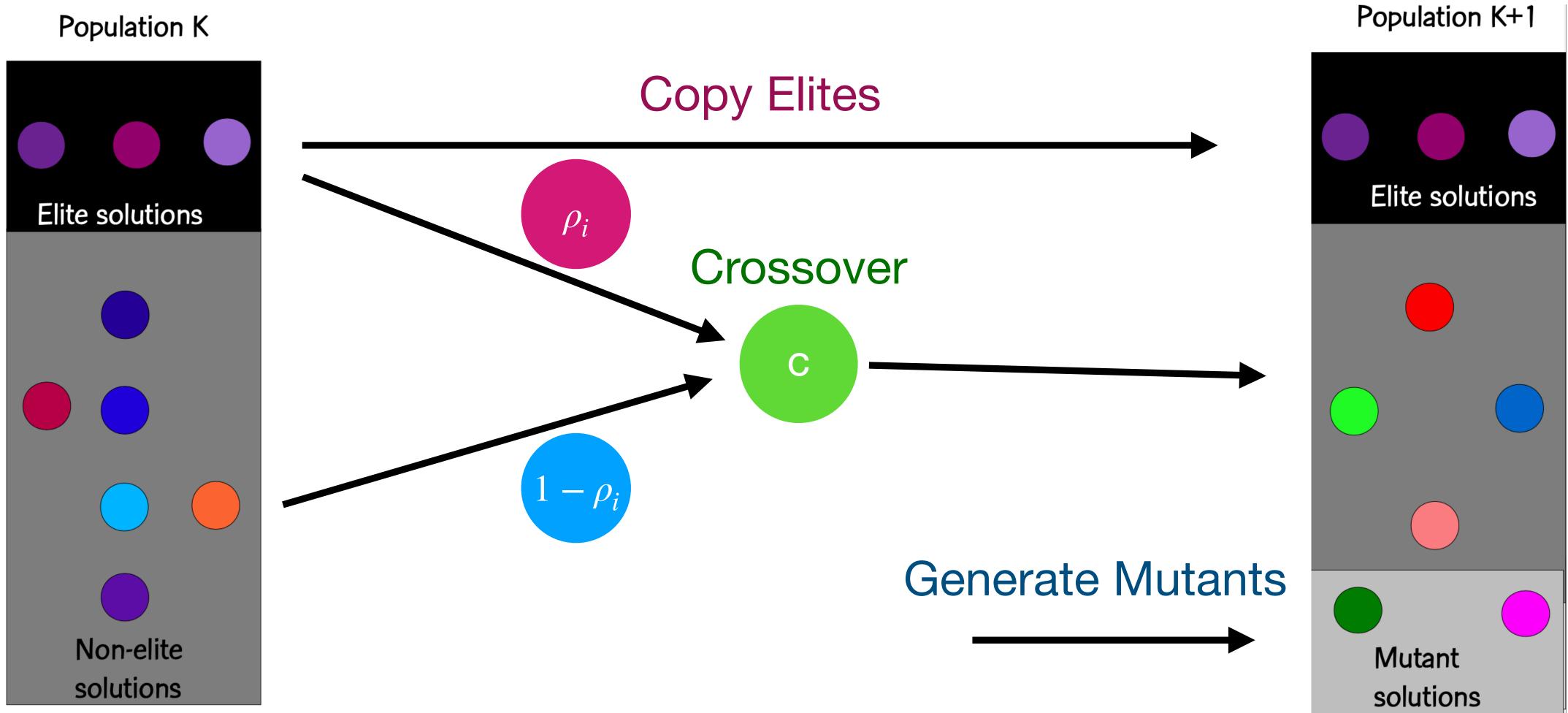
Copy Elites

Population K+1

Population K





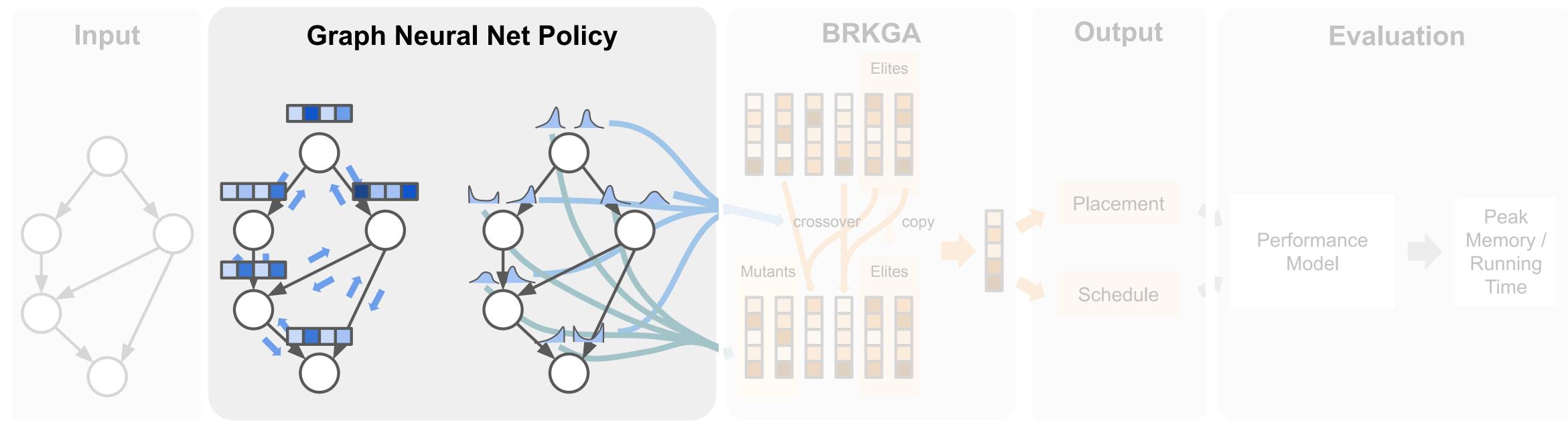


BRKGA Encoding & Decoding

Chromosome

- n-d vector $[0,1]^n$
- Ops-device affinity
- Scheduling priorities
- Tensor transfer priorities
- Fitness function
 - $f: [0,1]^n \to \mathbb{R}$

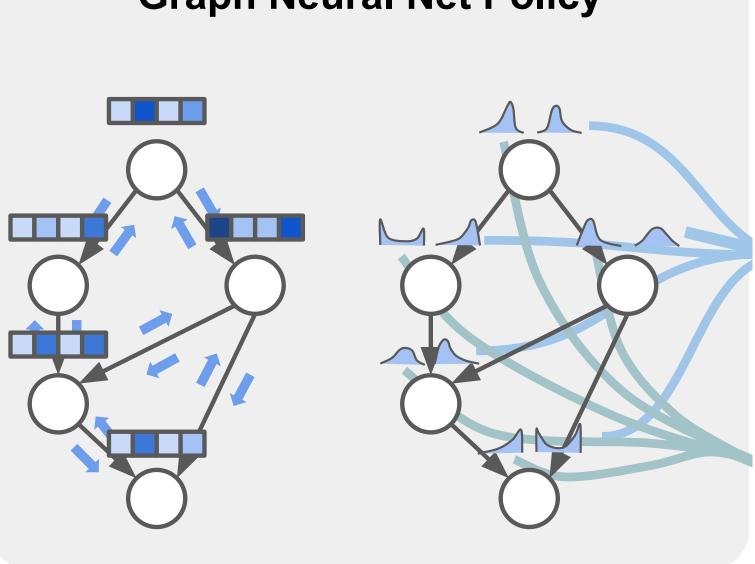
GNN policy



GNN policy

- Aim to generate
 - Parameters of chromosome generation distribution \mathscr{D}
 - Elite biases (ρ_i)
 - As a vector \mathbf{y}_{v} for each node v

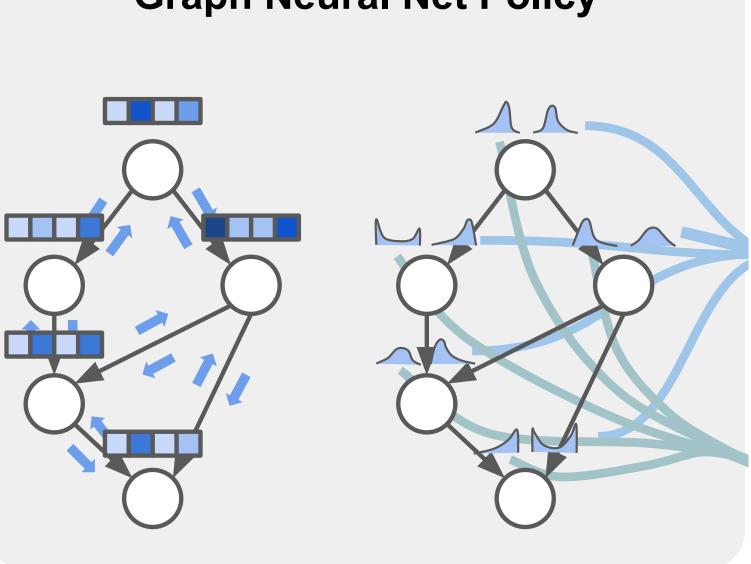
Graph Neural Net Policy



GNN policy

- Aim to generate
 - Parameters of chromosome generation distribution \mathscr{D}
 - Elite biases (ρ_i)
 - As a vector \mathbf{y}_{v} for each node v
- GNN
 - Representation vectors \mathbf{h}_{v} for each node v
 - Structural information of the graph

Graph Neural Net Policy



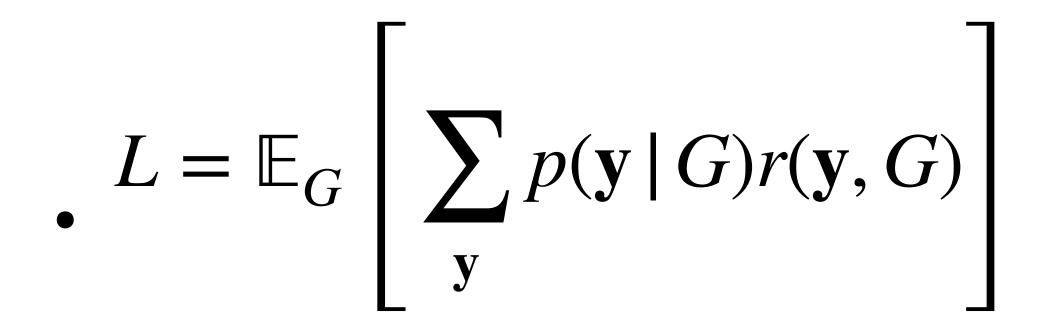
GNN policy How do we go from \mathbf{h}_{v} to \mathbf{y}_{v} ?

- Conditionally independent predictions
- Autoregressive predictions
- Actions & Rewards (Aka RL)

Graph Neural Net Policy $\Lambda \Lambda$

GNN policy REINFORCE

- Sample action vector y from p(y | G)• Reward $r = -\frac{o_a(G)}{o_s(G)}$
 - Maximise



Graph Neural Net Policy

Results **Vs Baselines**

- Constraint programming
- Graph partition
- Local search (greedy) \bullet
- Graph-As-Sequence

Algorith

CP SAT GP + DFLocal Sea BRKGA Tuned BRE GAS REGAI

Table 1: Performance for all methods, averaged over the graphs in the test set of the TensorFlow and XLA datasets.

	TensorFlow		XLA dataset		
	dataset ((test)			
nm	% Improv.	% Gap	% Improv.	% Gap	
	over	from	over	from	
	BRKGA5K	best	BRKGA5K	best	
Т	-1.77%	13.89%	-47.14%	71.35%	
FS	-6.51%	16.63%	-21.43%	39.86%	
arch	0.63%	8.65%	-6.69%	21.98%	
5K	0%	9.65%	0%	14.04%	
KGA	0.8%	8.54%	0.452%	13.52%	
	0.16%	9.33%	-1.1%	15.36%	
L	3.56%	4.44 %	3.74 %	9.40 %	

Discussion **Ablation analysis** Table 3: Performance of REGAL with various subsets of actions. Placement Yes No Yes Yes No Yes

Scheduling	Elite Bias	Valid	Test	XLA
No	No	-0.4%	-0.2%	-0.4%
Yes	No	4.4%	3.65%	1%
Yes	No	4.67 %	3.56%	3.74%
No	Yes	-1.53%	-1.1%	-2.2%
Yes	Yes	2.47%	1.4%	-0.4%
Yes	Yes	2.58%	1.88%	-0.7%

Comments

- Extensive evaluation and impressive results
- Transfer learning through policy network
- Objectives other than peak memory minimisation
- Too many optimisation layers, very complex system
- Justification of BRKGA

Conclusions

- Optimisation all the way down
- Input -> GNN -> REINFORCE -> BRKGA -> Decision
- Transfers well

References

- A. Paliwal, F. Gimeno, V. Nair, et al., REGAL: Reinforced genetic algorithm learning for optimizing computation graphs, 2020. arXiv: 1905.02494 [cs.LG].
- Mauricio G. C. Resende: Biased random-key genetic algorithms: A tutorial, 2012
- Zak Singh, R244 Paper Presentation on REGAL, 2021