QTune: A Query-Aware Database Tuning System with Deep Reinforcement Learning

Guoliang Li¹, Xuanhe Zhou¹, Shifu Li², Bo Gao²

¹Department of Computer Science, Tsinghua University, Beijing, China

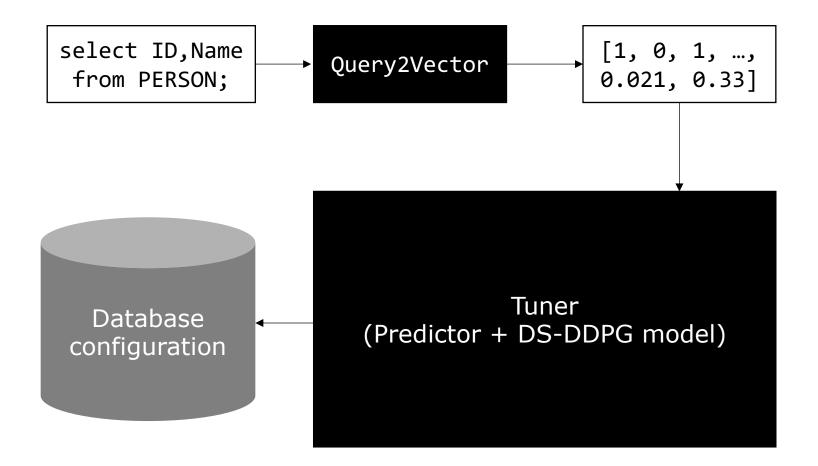
²Huawei Company

Presentation by Antonia Boca | R244

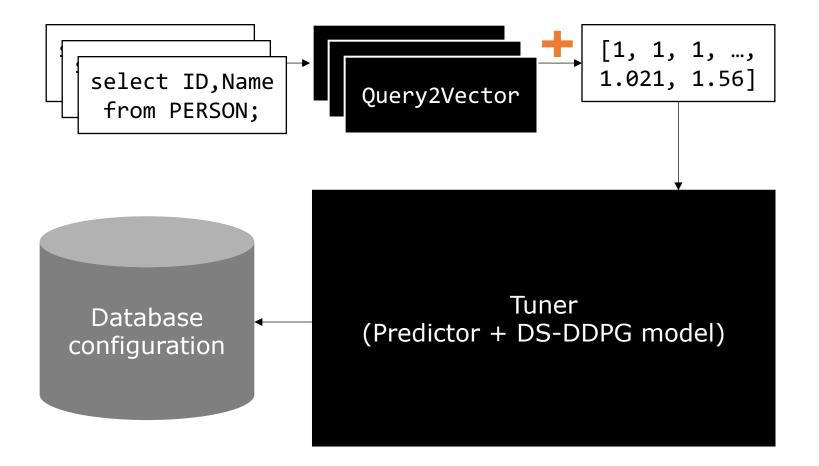
Motivation: Database tuning

- Parameters that can be tuned: max cache size, max concurrent threads, max RAM etc.
- Manual tuning can take up to several days
- Automatic tuning:
 - Rule-based: BestConfig
 - Learning-based:
 - Traditional ML system: OtterTune [relies on a large number of high-quality training examples from DBAs' experience data, which are rather hard to obtain]
 - Deep Reinforcement Learning: CDBTune
- CDBTune's limitation: not using query information!

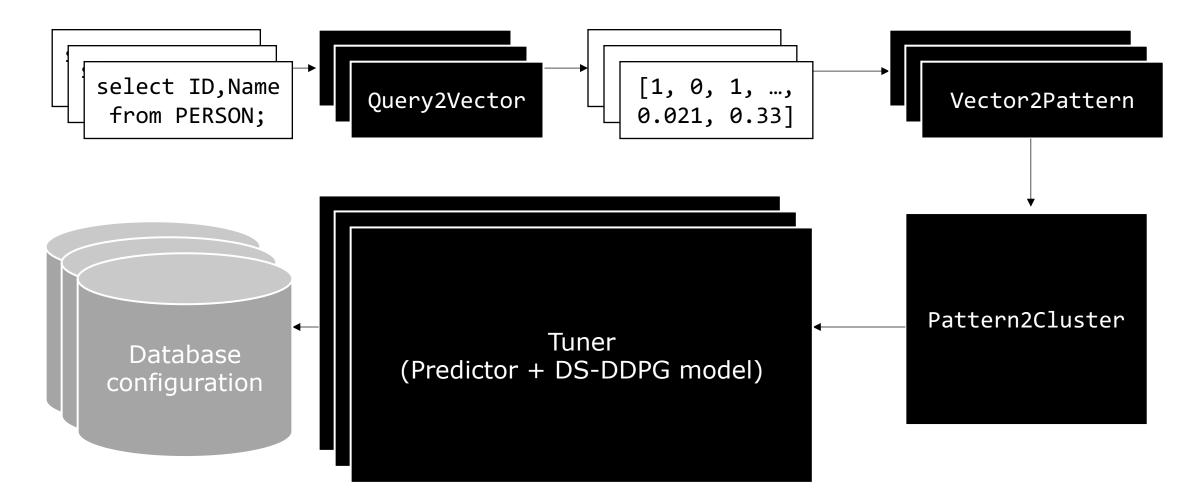
The Architecture (single query)



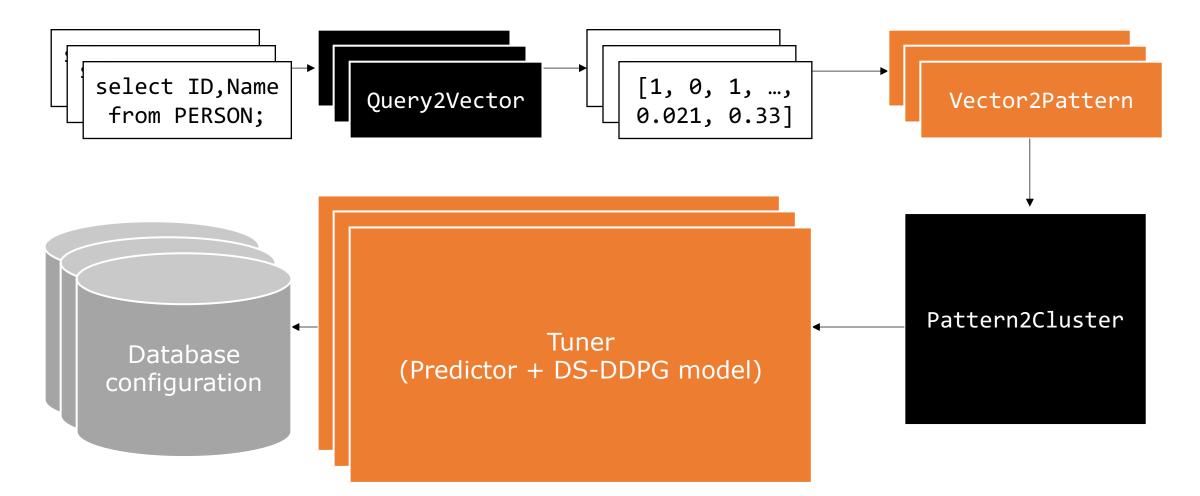
The Architecture (multiple queries)



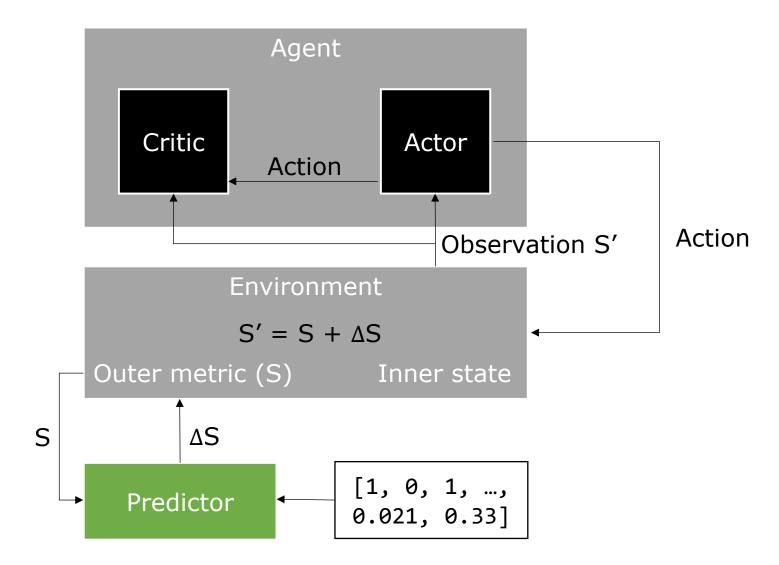
The Architecture (clusters)



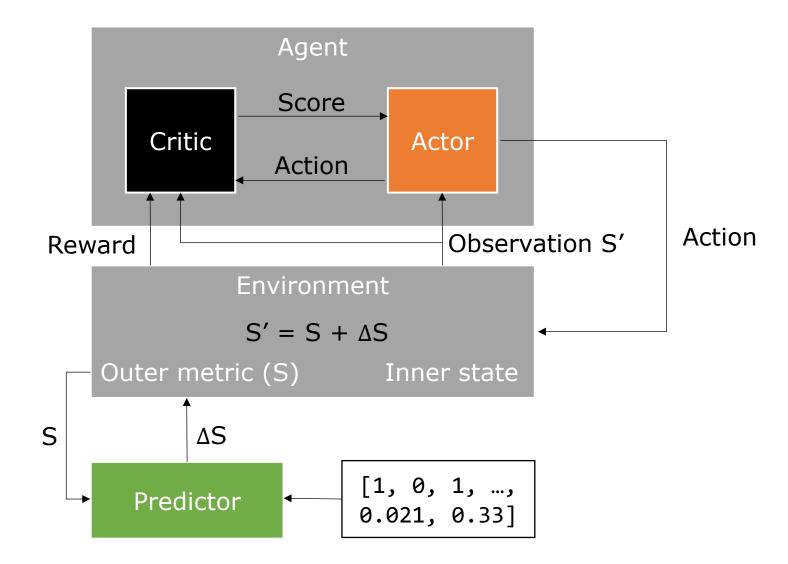
The Architecture (clusters)



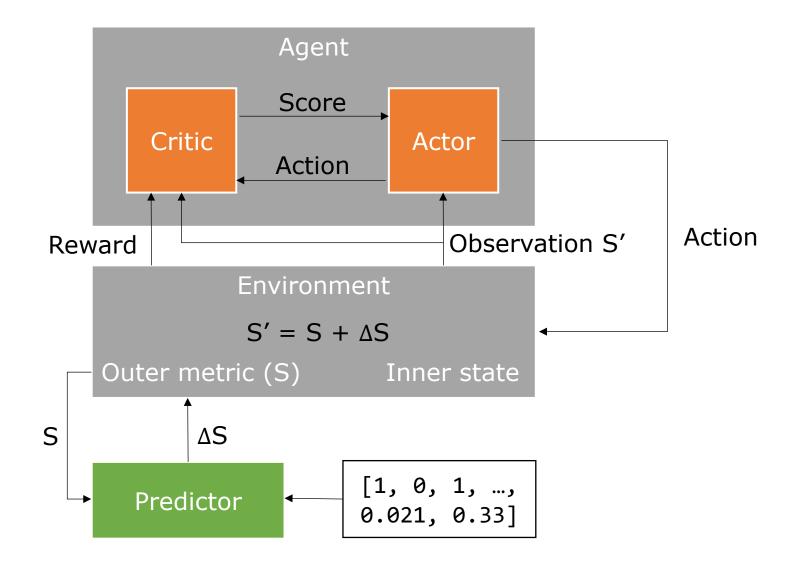
Training the Tuner (DS-DDPG)



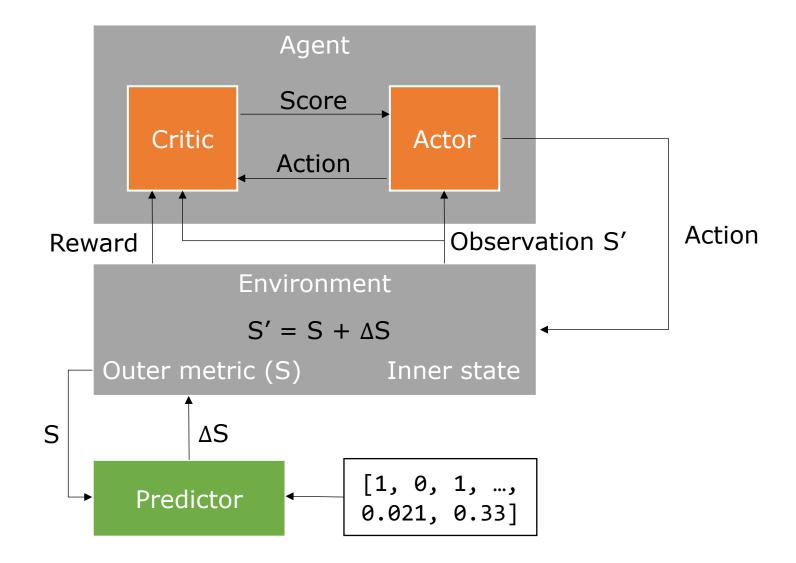
Training the Tuner (DS-DDPG)



Training the Tuner (DS-DDPG)

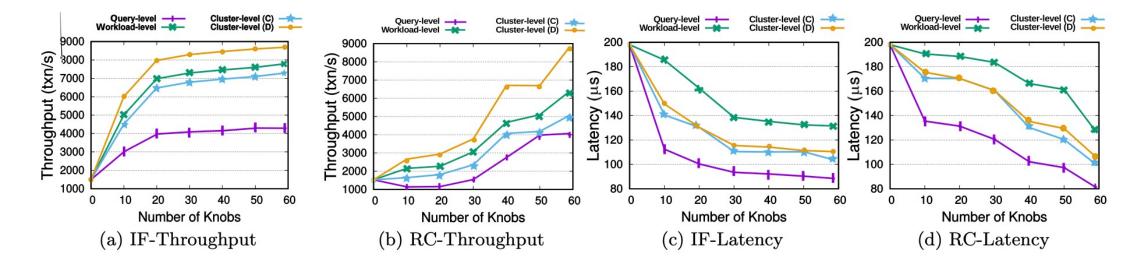


The Tuner



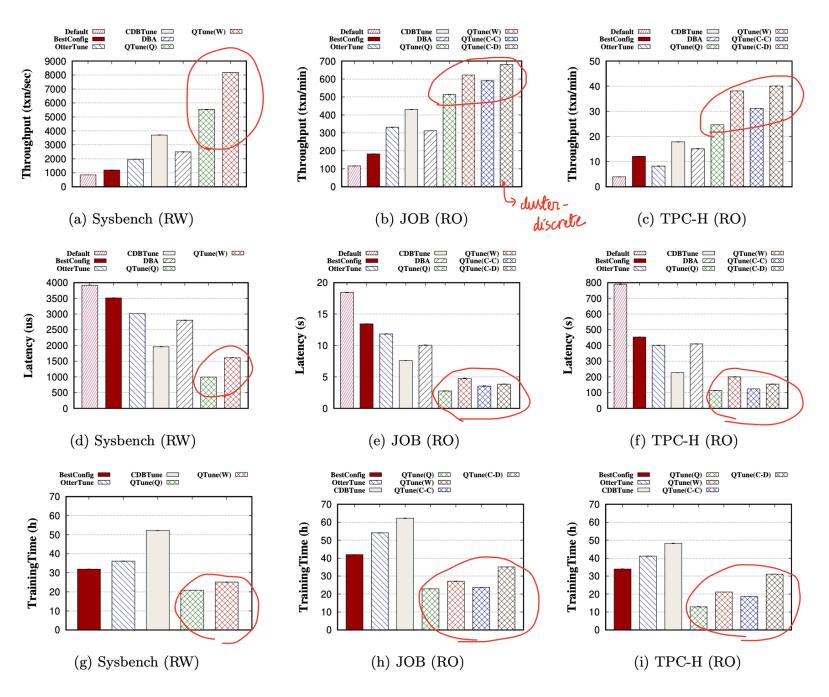
Evaluation

- Bulk of evaluation done on PostgreSQL with 3 datasets;
- Discrete Cluster-level tuning achieves the best throughput;
- Query-level tuning achieves the best latency.



Evaluation

- QTune **outperforms** all other SOTA methods on all types of tuning
- Qtune generalizes to other databases, datasets, and hardware platforms



Limitations

- Cost information is dependent on the SQL query optimizer;
- Their feature vectorization method makes it hard to add or delete new tables;
- Paper is unclear on whether QTune is fine-tuned before being evaluated on different databases/hardware platforms;
- Paper does not provide training metrics (e.g. loss, acc, hyperparameters)
- Evaluation is done only on **open-source DBMSs**
- Did not provide cluster-level evaluation on one of the datasets;

Conclusion

- QTune's DRL model is not a novel idea
 - CDBTune uses the same actor-critic architecture
- It's innovation comes from:

query-awareness

- Paper provides a feature vectorization method
- Also provides a way to predict the cost of an SQL query

Clustering approach

- They discretize feature vectors for faster clustering
- They show how this achieves both high throughput and low latency
- Not much follow-up work
 - paper suggests the method is used in the Huawei data centres
 - but the paper was cited >100 times!

Any questions?

Appendix 1: Overhead

Database	Featurization	Tuner	Vector2Pattern	Clustering	Recommendation	Execution	Overhead
MySQL	$9.37 \mathrm{ms}$	$2.23 \mathrm{ms}$	$0.29 \mathrm{\ ms}$	$1.64 \mathrm{\ ms}$	$4.36 \mathrm{\ ms}$	0.45 s - 262.9 s	3.8 % - 0.0068 %
PostgreSQL	9.46 ms	$2.38 \mathrm{\ ms}$	$0.39 \mathrm{\ ms}$	$2.51 \mathrm{\ ms}$	$5.01 \mathrm{\ ms}$	0.46 s - 263.3 s	4.1 % - 0.0075 %
MongoDB	13.48 ms	$2.16 \mathrm{ms}$	$0.36 \mathrm{ms}$	$2.32 \mathrm{~ms}$	$4.31 \mathrm{ms}$	0.63 s - 264.5 s	3.5~% - $0.0085~%$

Table 5: Time distribution of queries in JOB (RO) benchmark on MySQL, PostgreSQL and MongoDB respectively. Execution is the range of time the database executes a query. Overhead is the percentage of tuning in the total time for a query.

Appendix 2: Experiment settings

Table 2: Database information				
Database	Knobs without restart	State Metrics		
PostgreSQL	64	19		
MySQL	260	63		
MongoDB	70	515		

Table 6: Two hardware configurations

Instance	RAM (GB)	Disk (GB)	CPU (GHz)
А	16	780	2.49
В	128	5000	4.00

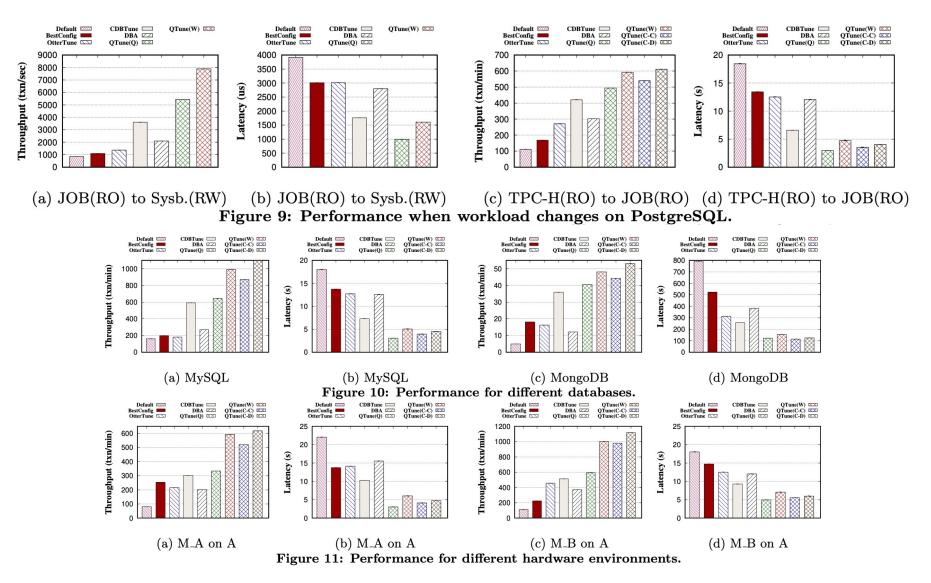
Table 3: Workloads. RO, RW and WO denote readonly, read-write and write-only respectively.

Name	Mode	Table	Cardinality	Size(G)	Query
JOB	RO	21	74,190,187	13.1	113
TPC-H	RO	8	158,157,939	50.0	22
Sysbench	RO, RW	3	4,000,000	11.5	474,000

Table 4: The number of training samples for the DL model in query clustering, the Predictor and the Actor-Critic module in DS-DDPG.

Name	Sysbench	JOB	TCP-H		
DL	3792	8000	40,000		
Predictor	3792	8000	40,000		
Actor-Critic	1500	480	300		

Appendix 3: Generalisation



Appendix 4: Training details

	Function TrainAgent (π_A, π_C, T_A)			
Function TrainPredictor (π_P, T_P) Input: π_P : The weights of a neural network; T_P : The training set	Input: π_A : The actor's policy; π_C : The critic's policy; T_A : training data 1 Initialize the actor π_A and the critic π_C ;			
1 Initiate the weights in π_P ; 2 while !converged do 3 for each $(v, S, I, \Delta S) \in T_P$ do 4 Generate the output G of $\langle v, S, I \rangle$; 5 Accumulate the backward propagation error: $E = E + \frac{1}{2} G - \Delta S ^2$; 6 Compute gradient $\nabla_{\theta_s}(E)$, update weights in π_P ;	2 while !converged do 3 Get a training data $T_A^1 = (S'_1, A_1, R_1), (S'_2, A_2, R_2), \dots, (S'_t, A_t, R_t);$ 4 for $i = t - 1$ to 1 do 5 Update the weights in π_A with the action-value $Q(S'_i, A_i \pi_C);$ 6 Estimate an action-value $Y_i = R_i + \tau Q(S'_{i+1}, \pi_A(S'_{i+1} \theta^{\pi_A}) \pi_C);$ Update the weights in π_C by minimizing the loss value $L = (Q(S'_i, A_t \pi_C) - Y_i)^2;$			
Algorithm 1: Training DS-DDPGInput:U: the query set $\{q_1, q_2, \cdots, q_{ U }\}$ Output: π_P, π_A, π_C 1Generate training data T_P ;2TrainPredictor(π_P, T_P);3Generate training data T_A ;4TrainAgent(π_A, π_C, T_A);				