
Device Placement Optimization with Reinforcement 
Learning
Azalia Mirhoseini, Hieu Pham, Quoc V. Le, Benoit Steiner, Rasmus Larsen, Yuefeng Zhou, Naveen Kumar, 
Mohammad Norouzi, Samy Bengio, Jeff Dean

Large Scale Data Processing and Optimization

A Hierarchal Model for Device Placement
Azalia Mirhoseini, Anna Goldie, Hieu Pham, Benoit Steiner, Quoc V. Le and Jeff Dean

and



Background

• Large-scale neural networks needs training across 
a distributed environment of heterogenous devices 

• Given TensorFlow graph, determine which device 
needs to execute which operations for best speed

 This needs to include both speed of operation 
and linkages between devices and adjacent 
operations on the graph

• Currently done by human experts who manually 
determine which part of graph to schedule where

• Current automated systems like Scotch use optimal 
graph partitioning algorithms with a cost function

• Authors approach: assess placements using 
reinforcement learning by using runtime vs. 
baseline as the reward signal



Approach

• Given a TensorFlow graph with 𝑀𝑀 operations and 𝐷𝐷 devices, compute a placement 𝑃𝑃 (an 𝑀𝑀-tuple), 
consisting of an assignment of operation 𝑜𝑜𝑖𝑖 to device 𝑑𝑑𝑗𝑗, where the runtime 𝑟𝑟 𝑃𝑃 is minimized

• Authors minimize: 𝐽𝐽 𝜃𝜃 = 𝔼𝔼𝑃𝑃~𝜋𝜋 𝑃𝑃 𝐺𝐺; 𝜃𝜃 𝑅𝑅 𝑝𝑝 𝐺𝐺 , usuing a sequence-to-sequence model (fig. 2) to define 

𝜋𝜋 𝑃𝑃 𝐺𝐺; 𝜃𝜃 and sample from it and use REINFORCE: ∇𝜃𝜃𝐽𝐽 𝜃𝜃 ≈ 1
𝐾𝐾
∑𝑖𝑖=1𝐾𝐾 𝑅𝑅 𝑃𝑃𝑖𝑖 − 𝐵𝐵 .∇𝜃𝜃𝑝𝑝 𝑃𝑃𝑖𝑖 𝐺𝐺; 𝜃𝜃 to train

• Model input is the set of operations, defined as a 3-tuple with operation type, output shape, and a one-
hot encoded vector representing other operations depending on current operation

• Model consists of an encoder RNN and a decoder RNN, which is an attentional LSTM



Implementation Details

• 𝑅𝑅 𝑃𝑃 = 𝑟𝑟(𝑃𝑃) is used as reward signal to dampen large signals

• Some placements will fail (e.g. exceeding device’s memory 
limitations), here runtime is set to a high value or ignored at the end

• As each operation is input to RNN, and TensorFlow graphs contain 
very large number of operations, co-located groups of operations that 
can be execute on a single device need to be manually created., 
including:

 TensorFlow’s default colocation groups (e.g. operation outputs 
with gradients)

 Operations that only depend on one parent

 Network specific groupings – e.g. convolution/pooling layers in 
CNNs and LSTM cells

• Model resides on parameter server and dispatches placements to 
controllers, which execute on workers and calculate runtime

 Controller gathers gradient update and sends to server

 Average of 10 steps except first is used



Experiments (I)

• Benchmarked on 2 large RNNLM language/machine translation models, and Inception-V3

• Comparison vs. single CPU/GPU, Scotch, MinCut (i.e. Scotch but configured to exclude 
CPU unless necessary), and expert designed placements

• Results show RL-based approach matches or beats experts in all benchmarks

• Current automated approaches heavily underperform both expert-designed and RL based 
approach



Experiments (II)

• RNNLM: RL-based approach discovers it’s possible to fit model onto one GPU, so does 
that and beats expert which used 2 GPUs

• Neural MT: RL learns to place less computationally intensive operations e.g. embeddings 
lookup on CPUs to reduce overhead for GPUs resulting in 20% speedup

• Inception V3: With 2 GPUs, RL approach notices that communication costs > parallelism 
gains and uses just one CPU, whereas it finds a better placement with 4 GPUs



Comparison vs. Data-Parallelism

• Inception V3 with data-parallelism with “synchronous and 
asynchronous towers” approaches (e.g. data-parallelism 
with asynchronous/synchronous gradient updates from 
batches) was compared vs. model parallelism from RL-
based approach

• Results showed faster initial training time for asynchronous 
towers, but faster convergence for RL-based approach



Key Drawbacks

Limitation Discussion

The process takes a long time to train, ~12-
27 hours for models studied

Limitation on how much additional workers 
can help without more hardware. Approach 
designed for static hardware graph.

Optimal placement is hardware-dependent –
approach cannot be scaled to the cloud

Inherent limitation of approach. However, 
this could potentially be overcome by 
including device features in training. Key 
solution by ML is non-stationary 𝑅𝑅(𝑃𝑃).

Timely training requires many more GPUs 
than model is trained to use

Author works at Google, framework likely 
aimed at creating specialized execution 
graphs for particular applications

Approach requires manual determination of 
groups, which can be architecture-specific

?

TensorFlow graphs can be huge, since 
operations are each an element of the input 
sequence, it limits how large a TF graph can 
go through this process

?



Solution: Hierarchal Model for Automated Groupings

• Add a “grouper” model that calculates operation groupings automatically, and feed 
groupings to same model as previous paper, and train both models in tandem

• Projection of operations into a lower dimensional space – compresses TF graph and 
optimizes execution at the same time



Hierarchal Model Implementation and Benchmarks

• Previous approach limited to graphs with <1000 groupings

• Input to grouper is similar to previous work: operation type, output 
shape, and adjacency information

• Input to placer is now 1) vector with counts of operation types in group, 
2) total amount of output shapes in group, 3) adjacency information

• Given most placements infeasible, only feasible placements considered 
in first 500 steps

• Benchmarks computed using Inception-V3, NMT and RNNLM as 
before, but also larger versions of NMT and ResNet

• Same baseline comparisons as before



Hierarchal Model Results

• Hierarchal planner shows as good or substantially better results than 
human experts in most of the benchmarks

• Results show non-trivial and human-impossible placements to find, 
including different parts of unrolled LSTM placed across different 
devices, which previous approach would not be able to do at all



Pros & Cons

• Pros:

 Completely automated placement of compute graph across devices

 Achieves faster-than-state of the art training results across benchmarks, both faster 
than other automated systems and humans

 Can be used across arbitrary hardware at training time, no prior on hardware needed

• Cons

 Training is slow and potentially requires much more hardware than the underlying TF 
graph is actually being run on

 Optimal placement is hardware-depending, and does not scale to cloud compute

 Discussion of why Scotch underperforms is limited

 Approach still uses feed-forward network to determine placings, potentially limiting the 
size of the number of operations

 Needs sensitivity analysis of placements to see how robust placement is



Citations

Mirhoseini, A., Goldie, A., Pham, H., Steiner, B., Le, Q.V., Dean, J., 2018. A Hierarchical Model for Device Placement, in: International 
Conference on Learning Representations.

Mirhoseini, A., Pham, H., Le, Q.V., Steiner, B., Larsen, R., Zhou, Y., Kumar, N., Norouzi, M., Bengio, S., Dean, J., 2017. Device 
Placement Optimization with Reinforcement Learning. CoRR abs/1706.04972.

Pellegrini, F., Roman, J., 1996. Scotch: A software package for static mapping by dual recursive bipartitioning of process and 
architecture graphs, in: Liddell, H., Colbrook, A., Hertzberger, B., Sloot, P. (Eds.), High-Performance Computing and Networking. 
Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 493–498.


	Device Placement Optimization with Reinforcement Learning
	Background
	Approach
	Implementation Details
	Experiments (I)
	Experiments (II)
	Comparison vs. Data-Parallelism
	Key Drawbacks
	Solution: Hierarchal Model for Automated Groupings
	Hierarchal Model Implementation and Benchmarks
	Hierarchal Model Results
	Pros & Cons
	Citations

