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Problem Statement

» What is a database query?
» A user request to a database system

» An act of data manipulation or retrieval

» Whatis a Query Optimiser?
» A component that sits in the Database Management System (DBMS)
» Receives a user request and returns a query plan
» The goal: the query plan should be efficient (e.g., low latency)

» Question: Can we improve the Query Optimizer with MLe How?e
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http://www.cbcb.umd.edu/confcour/Spring2014/CMSC424/query_optimization.pdf

BAO
Motivation & Background

» The Query Optimiser in DBMSs does a good job! Can we do bettere
» Previous attempts replaced the Query Opftimiser (Neo, QPPNet)

» Dismisses decades of white-box expertise; hard to train; meagre 99
percentile latency, incompatible with new schema/datasets.

» |dea: Embed DBA expertise on top of a vanilla Query Optimiser

» DBAs can reason about classes of queries; generalisation may lead
to regression

» Problem: find the rules that work best given a specific query



BN PostgreSQL
. PostgreSQL (no loop join)
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Unless otherwise noted, figures are taken from Marcus et al., 2020
(Bao: Learning to Steer Query Optimizers )



Bao
Bird’s eye view
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Contextual Multi-Armed Bandit in Query Optimisation
Context: “n” query plans generated by the set of hint sets
Arms: a set of “hint"” sets

What is the is simplest hint sete

Empty set! [ ]

How about a good example?¢ [disable index scan, disable merge
join]

Last ingredient: Regret minimisation problem
Regret = (Cost(Select(plany)) — mini(Cost(planHl.)))2



Tree Convolutional
Neural Network

How to model the
performance of a query
plane
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solution in Neo

TCNN (Tree Convolutional
Neural Networks)




Thompson Sampling for NN

» Exploration vs Exploitation

» Prevent selecting the same hint set; Explore new hint sets for a given
query

» Machine Learning aims o find the weights that fit the data best;
Recall max(P|w| data])

» New task: (P[w| data])

» Train a Neural Network on a “booftstrap” of the training data (lan
Osband et al. 2015)

» Not a new concept! Bagging — train members of the model on
different booftstrap samples with replacement



Bootstrap training

set for NN
Bagging Example

w0 ~ P([w| datal]) .
Equivalent to drawing @ oo ® Q00D P@ OO oy

sample from the 0 C T T ISIOL T JORSSSELE

probability distrioution 0090 $00000000 -
of weights original sample

Bao: retrain periodically
with bOOTSTI’CIp scmples Figure taken from (Paola Galdi et al., 2018)
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Learnt Engine comparison
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Architecture Evaluation
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Critfigue
Strengths

» A robust example of Machine Programming

» Unigque strategy to embed white-box knowledge on a per-query
basis

» Reduced training time compared to deep RL approaches
» Can be easily infegrated info existing DBMSs (given expertisel)
» Able to generalise to schema and dataset changes.
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Critfigue

Weaknesses & Future work

» DBA expertise is paramount to Bao’s performance
» The number of arms increases exponentially with new operators

» There's no experimental evaluation or knowledge around how to
find a “good” set of hint sets

» Hints (database hooks) are not DBMS agnostic
» A hint set should be valid (invalid: disable all join types)
» Future work:
» Explore strategies for automated hint set generation and validation
» Integrate into a self-driving DBMS (NoisePage [https://noise.page/])
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Appendix 1:
TCNN Input

Binary query plans as input to
TCNN

Key ideas: append null
nodes; split the tree if more
than 2 children

One-hot encoding for
physical operators

Agnostic of DBMS schema
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Appendix 2: Continued
Bird’s eye view

» Thompson Sampling to solve CMAB

» Not a new contribution; Machine Programming!

» Train a predictive model MW for the plan cost;

» Classic ML training: max(P|[w| data]) (Exploitation)
» Guessing w0 ~P(w) (Exploration)

» Balance w0 ~P(w|data)
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