TVM: An Automated End-to-End
Optimizing Compiler for Deep
Learning

R244: Large-Scale Data Processing and Optimisation

Kian Cross

Background

* There is an increasing need to bring machine learning to a wide
diversity of hardware devices.

* This currently requires lots of manual effort to port to different
backends (e.g. CPUs, GPUs, FPGAs).

* Previous work required manual effort and hand-optimisation (e.g.,
TensorFlow Lite).

* TVM is proposed to automate this process.

System Overview

Frameworks "

~O0O ® 9D

Section 3

Section 4

Section 5

v

Computational Graph

High Level Graph Rewriting
v

Operator-level

Declarative
Tensor Expressions

Optimized Computational Graph
v

Optimization and Code Generation

Hardware-Aware
Optimization Primitives

Machine Learning Based
Automated Optimizer

Optimized Low Level Loop Program

— v

Accelerator Backend

| LLYMIR

CUDA/Metal/OpenCL

v

Deployable Module

Tensor Expression Language

* The language does not specify the loop structure and many other
execution details.

* Provides flexibility for adding hardware-aware optimisations for
various backends.

'), t.var('n'), t.var('h')

(m, h), name="'A")

(n, h), name='B")

(6, h), name="k")

n), lambda y, Xx:

t.sum(A[k, yl * B[k, x], axis=k))

, N, h=t.var('m
t.placeholder(
t.placeholder(
t.reduce_axis(
t.compute((m,

O X >3

Scheduling

* A schedule maps the tensor expressions to low-level code.
* Schedule transformations can be used to apply optimisations.

* There are many equivalent schedules.

A = t.placeholder((1024, 1024))
B = t.placeholder((1024, 1024))
k = t.reduce_axis((0, 1024))
C = t.compute((1024, 1024), lambda y, x:
t.sum(Alk, y] * B[k, x], axis=k))
s = t.create_schedule(C.op)
l for y in range(1024):

for x in range(1024):
Q-J.- Clylx] = 0
for k in range(1024):
Clyl[x] += A[k][y] * BI[k][x]

+ Loop Tiling
yo, xo, ko, yi, xi, ki = s[C].tile(y, x, k, 8, 8, 8)

for yo in range(128):
for xo in range(128):
Clyo*8:yo+8+8] [x0*8:x0%8+8] = @
for ko in range(128):
)—*r for yi in range(8):
for xi in range(8):
for ki in range(8):
Clyo*8+yil [xo*8+xi] +=
Alko*8+ki] [yox8+yi] * B[ko*8+ki] [xo*8+xil]

M

+ Cache Data on Accelerator Special Buffer
CL = s.cache_write(C, vdla.acc_buffer)

AL = s.cache_read(A, vdla.inp_buffer)
additional schedule steps omitted ..

+ Map to Accelerator Tensor Instructions
s[CL].tensorize(yi, vdla.gemm8x8)

inp_buffer AL[8][8], BL[8][8]

acc_buffer CL[8][8]

for yo in range(128):

. for xo in range(128):

4 vdla.fill_zero(CL)

O--P' for ko in range(128):

vdla.dma_copy2d(AL, A[ko*8:ko*8+8] [yo*8:yo*8+8])

vdla.dma_copy2d(BL, B[ko*8:ko*8+8] [x0*8:x0%8+8])
vdla. fused_gemm8x8_add(CL, AL, BL)

vdla.dma_copy2d(C[yo+*8:yo*8+8,x0*8:x0+8+8], CL)

Oschedule __, schedue _ corresponding
transformation low-level code

Schedule Transformations (Optimisations)

* Nested Parallelism with Cooperation

* Groups of threads can cooperatively fetch the data they all need and place it
into a shared memory space.

* Takes advantage of the GPU memory hierarchy.

* Tensorization
» Utilise tensor compute primitives.

* Explicit Memory Latency Hiding

* Overlap memory operations with computation to maximize utilization of
memory and compute resources.

How does TVM select the correct
schedule?

Automated Optimisation

* Schedule Space Specification

* Allows developer to incorporate domain specific knowledge to restrict the search
space.

* Each hardware backend is specified by a 'master template'.

e ML-Based Cost Model

* Schedule explorer proposes configurations that may improve an operator's
performance.

ML model takes this programme and predicts its running time.
 Model is trained using runtime measurement data collected during exploration.
* Schedule Exploration

* Promising candidates are run on hardware to obtain real measurements for training.

TensorOp
Specification

Schedule Space
Template

T

Database

training
data

Schedule Explorer

queryT lupdate

ML Cost Model

rpc

Device Cluster

» Tracker

get perf

Raspberry Pi

Mali GPU

Nvidia GPU

FPGA Board

By the end of all this, you have
low-level hardware optimised
code.

Evaluation

* "Experimental results show that TVM delivers performance across
hardware back-ends that are competitive with state-of-the-art, hand-
tuned libraries for low-power CPU, mobile GPU, and server-class

11
G P U S' I Tensorflow Lite TVM w/o graph opt s TVM
800.0 12.0
700.0+ 10.01
600.0
50001 8.01
€400'0- 6.0 1
— 300.01 401
200.0+
100.01 l 2.07
0.0- - - 0.0 ;
ResNet-18 MobileNet DQN

Figure 16: ARM AS53 end-to-end evaluation of TVM and
TFLite.

B Tensorflow Lite s TVM

COrRHENNW
ocuouwouwo

Cl C2 C3 C4 C5 C6 C7 C8 C9 C1l0C1l1C12

Dl D2 D3 D4 D5 Do D7 D8 D9

Figure 17: Relative speedup of all conv2d operators in
ResNet-18 and all depthwise conv2d operators in mo-
bilenet. Tested on ARM AS53. See Table 2 for the con-

figurations of these operators.

Relative Speedup Relative Speedup

© B N W
©o o o o

Pros and Cons

 Comprehensive, well written paper.

* Evaluation shows that TVM performs very well.

* No information on compilation times of models?
* Does not support dynamic input shapes.

* (Only for inference, not training).

TVM: An Automated End-to-End
Optimizing Compiler for Deep
Learning

Questions and discussion...

