
TVM: An Automated End-to-End 
Optimizing Compiler for Deep 

Learning

R244: Large-Scale Data Processing and Optimisation

Kian Cross

Chen, T., Moreau, T., Jiang, Z., Zheng, L., Yan, E., Shen, H., ... & Krishnamurthy, A. (2018). {TVM}: An 
automated {End-to-End} optimizing compiler for deep learning. In 13th USENIX Symposium on 

Operating Systems Design and Implementation (OSDI 18) (pp. 578-594).



Background

• There is an increasing need to bring machine learning to a wide 
diversity of hardware devices.

• This currently requires lots of manual effort to port to different 
backends (e.g. CPUs, GPUs, FPGAs).

• Previous work required manual effort and hand-optimisation (e.g., 
TensorFlow Lite).

• TVM is proposed to automate this process.



System Overview



Tensor Expression Language

• The language does not specify the loop structure and many other 
execution details.

• Provides flexibility for adding hardware-aware optimisations for 
various backends.



Scheduling

• A schedule maps the tensor expressions to low-level code.

• Schedule transformations can be used to apply optimisations.

• There are many equivalent schedules.





Schedule Transformations (Optimisations)

• Nested Parallelism with Cooperation
• Groups of threads can cooperatively fetch the data they all need and place it 

into a shared memory space.

• Takes advantage of the GPU memory hierarchy.

• Tensorization
• Utilise tensor compute primitives.

• Explicit Memory Latency Hiding
• Overlap memory operations with computation to maximize utilization of 

memory and compute resources.



How does TVM select the correct 
schedule?



Automated Optimisation

• Schedule Space Specification
• Allows developer to incorporate domain specific knowledge to restrict the search 

space.

• Each hardware backend is specified by a 'master template'.

• ML-Based Cost Model
• Schedule explorer proposes configurations that may improve an operator's 

performance.

• ML model takes this programme and predicts its running time.

• Model is trained using runtime measurement data collected during exploration.

• Schedule Exploration
• Promising candidates are run on hardware to obtain real measurements for training.





By the end of all this, you have 
low-level hardware optimised 
code.



Evaluation

• "Experimental results show that TVM delivers performance across 
hardware back-ends that are competitive with state-of-the-art, hand-
tuned libraries for low-power CPU, mobile GPU, and server-class 
GPUs."





Pros and Cons

• Comprehensive, well written paper.

• Evaluation shows that TVM performs very well.

• No information on compilation times of models?

• Does not support dynamic input shapes.

• (Only for inference, not training).



TVM: An Automated End-to-End 
Optimizing Compiler for Deep 

Learning

Questions and discussion...

Chen, T., Moreau, T., Jiang, Z., Zheng, L., Yan, E., Shen, H., ... & Krishnamurthy, A. (2018). {TVM}: An 
automated {End-to-End} optimizing compiler for deep learning. In 13th USENIX Symposium on 

Operating Systems Design and Implementation (OSDI 18) (pp. 578-594).


