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Motivation

e Tensor graph super-optimization via graph substitutions (aka rewrite rules)

 TASO: generation of graph substitutions
« Searching space of resulting graphs
» Greedy algorithm and sequential application of substitutions
e Limits search space and not necessarily optimal

* Inefficient (exponential scaling)



How to improve?

Tensat!

« Builds on TASO graph substitutions and improves search algorithm
« Equality Saturation [mate et al., 2009]
« Idea: explore everything compactly first, then extract optimal solution

» Uses a data structure called e-graphs for compact storage [Gregory Nelson PhD
Thesis, 1980]

e 2 main phases: exploration and extraction

* Faster run-time and shorter search time compared to TASO



Equality Saturation

All about equivalences

e-graphs: set of equivalence classes (e-classes) each of which contain e-nodes

e-nodes: an operator with children that are e-classes

Input: (a X 2)/2




Example - Exploration
Input: (a x2)/2 = (a < 1)/2
Substitutions:

xX2-x<xl1
(x X y)z = xX(y/z) I

x/x — 1

xX1—-x

Initial e-graph



Example - Exploration
Input: (a x2)/2 = (a < 1)/2
Substitutions:

xX2-x<xl

(x X y)/z = xX(y/z2)

x/x — 1

xX1—-x

Apply first rewrite rule



Example - Exploration
Input: (ax2)/2=ax2/2)=ax1=a

Substitutions: e
P
xX2-x<xl ‘-
¢ /! .-
, 0,
(xXy)/z—=>xX(/72) X
[ T
x/x —> 1 " -
xX1—->x .
\.. —

, Applied all four rewrite rules
Explore until saturated or user-

specified number of iterations



Equality Saturation

2 phases to find optimal equivalent expression (e.g. computation graph)

Exploration Extraction




Repurpose for tensor graph superoptimization

» Extensions to standard equality saturation

« Multiple output subgraphs [exploration] - note: makes e-graph large!
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Tensat: Extraction

 Cost model;

Minimize: f(z) = Z Ci;

« Each operation (1-1 with e-node)
associated with a cost Subject to:

« Total cost = sum of costs of all operations

in resulting graph
Vi,Vm € h;,z; < Z xj,

Jj€em
Vi,Vm € h’iatg(i) —tm — €+ A(l — :Lz) >0,
VYm,0<t,, <1,

» Greedy extraction vs ILP extraction

 ILP struggles with cycle constraints




Tensat: Cycle Filtering

Revisiting the exploration step

 Idea: filter for cycles in exploration phase
» Naive approach checking for each substitution
» Efficient implementation: for each iteration

* Pre-filtering: create a list of descendant e-classes for each node

* For each substitution, check with descendants list to see whether it causes
cycle

* Post-processing: find all cycles created in iteration via DFS, remove last
node that causes the cycle



Experiments

Comparison with TASO
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Figure 4. Speedup percentage of the optimized
graph with respect to the original graph: TASO v.s.
TENSAT. Each setting (optimizer x benchmark)
is run for five times, and we plot the mean and

standard error for the measurements.
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Figure 5. Optimization time (log scale): TASO
v.s. TENSAT. “TASO total” is the total time of
TASO search. “TASO best” indicates when TASO
found its best result; achieving this time would
require an oracle telling it when to stop.
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Figure 6. Speedup over opti-
mization time for TASO and
TENSAT, on Inception-v3. We
use a timeout of 60 seconds.



Experiments

Multiple output subgraphs
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#iter of multi pattern rewrites

#iter of multi pattern rewrites

#enodes

#iter of multi pattern rewrites
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Figure 7. Effect of varying the number of iterations of multi-pattern rewrites kmuii. For BERT, NasNet-A, NasRNN, Inception-v3, the ILP
solver times out at one hour for knui = 3. Left: speedup of the optimized graphs (the y-axis is split for clarity). Middle: time taken by
TENSAT. Right: final e-graph size (number of e-nodes). The middle and right figures are in log scale.



In summary
Tensat

* Framework for tensor graph super-optimization via graph substitutions
e search algorithm using equality saturation
« extensions for tensor computation graphs:
 multiple output subgraphs
 cycle filtering

e run-time and optimization time speed ups compared to TASO



Discussion + Questions

» Changing cost model to incorporate other hardware configurations (e.g. parallel execution of operations)

* [s the solution a global optimum?
 cycle filtering
 user decides number of multiple output subgraphs

» [added after Q&A] how big does the e-graph really grow? Implementation limits number of nodes. Hard to
grow until saturation

» [added after Q&A] local cost model (they currently use operation run-time vs global one)
* Reasons for extraction algorithms explored? Any others?

* Heat-map for which graph substitutions were made for each architecture (like in TASO paper) would be interesting



Thank you!



Questions?
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More experiments

Extraction , With cycle Without Exploration time (s) kpug Vanilla  Efficient
time (s) muitl real int cycle
| 0.18 0.17
I 096 098 0.16 BERT
BERT 2 3600 >3600  510.3 2 32.9 0.89
1 1116 1137 0.32 | 1.30 0.08
NasRNN 5 23600 >3600 3567 NasRNN 7 2032 1.47
I 424 438 1.81
NasNet-A | 3.76 1.27
2 >3600 >3600 75.1 -
NasNet-A > 53600  8.62

Table 5. Effect of whether or not to include cycle constraints in ILP
on extraction time (in seconds), on BERT, NasRNN, and NasNet- Table 6. Comparison between vanilla cycle filtering and efficient

?ﬁ dF Sgtlh: Xieercsgf-tiiZ;S%J:ih?gpsfsob?gf (‘)‘rs(;grg stlglg?;afles cycle filtering, on the exploration phase time (in seconds) for BERT,
1 1 1 1 1 m-
= polog NasRNN, and NasNet-A.



More experiments

Graph Runtime (ms) Original Greedy ILP

BERT 1.88 1.88 1.73
NasRNN 1.85 1.15 1.10
NasNet-A 17.8 22.5 16.6

Table 4. Comparison between greedy extraction and ILP extrac-
tion, on BERT, NasRNN, and NasNet-A. This table shows the
runtime of the original graphs and the optimized graphs by greedy
extraction and ILP extraction. The exploration phase is run with
kmulti = L.



Example

Input: (a X 2)/2
Rewrite rules:

xX2-x<xl

(x X y)/z = xX(y/z2)

x/x — 1

xX1—-x

Apply first rewrite rule



Example

Input: (a X 2)/2
Rewrite rules:

xX2-x<xl

(xXy)/z = xX(y/2)

x/x — 1

xX1—-x

Apply second rewrite rule



Example

Input: (a X 2)/2
Rewrite rules:

xX2-x<xl

(xXy)/z - xX(y/2)

x/x =1

xX1—-x

Apply third rewrite rule



Exampl
Input: (ax2)/2=ax2/2)=ax1=a

Substitutions: e
P
xX2-x<xl S, -
¢ /! .-
, 0,
(xXy)/z—=>xX(/72) X
[ T
x/x —> 1 " -
xX1—->x .
\.. —

, Applied all four rewrite rules
Explore until saturated or user-

specified number of iterations



Egg implementation

2 core operations (as implemented on egg):
add to add e-nodes and union to merge e-classes

Defined so that it keeps e-nodes unique (no two e-nodes with the same
operators and equivalent children in either the same or different e-classes)



