Equality Saturation for Tensor
Graph Superoptimization

Presented by Sarah Zhao, R244 (11.16.2022)

Motivation

e Tensor graph super-optimization via graph substitutions (aka rewrite rules)

 TASO: generation of graph substitutions
« Searching space of resulting graphs
» Greedy algorithm and sequential application of substitutions
e Limits search space and not necessarily optimal

* Inefficient (exponential scaling)

How to improve?

Tensat!

« Builds on TASO graph substitutions and improves search algorithm
« Equality Saturation [mate et al., 2009]
« Idea: explore everything compactly first, then extract optimal solution

» Uses a data structure called e-graphs for compact storage [Gregory Nelson PhD
Thesis, 1980]

e 2 main phases: exploration and extraction

* Faster run-time and shorter search time compared to TASO

Equality Saturation

All about equivalences

e-graphs: set of equivalence classes (e-classes) each of which contain e-nodes

e-nodes: an operator with children that are e-classes

Input: (a X 2)/2

Example - Exploration
Input: (a x2)/2 = (a < 1)/2
Substitutions:

xX2-x<xl1
(x X y)z = xX(y/z) I

x/x — 1

xX1—-x

Initial e-graph

Example - Exploration
Input: (a x2)/2 = (a < 1)/2
Substitutions:

xX2-x<xl

(x X y)/z = xX(y/z2)

x/x — 1

xX1—-x

Apply first rewrite rule

Example - Exploration
Input: (ax2)/2=ax2/2)=ax1=a

Substitutions: e
P
xX2-x<xl ‘-
¢ /! .-
, 0,
(xXy)/z—=>xX(/72) X
[T
x/x —> 1 " -
xX1—->x .
\.. —

, Applied all four rewrite rules
Explore until saturated or user-

specified number of iterations

Equality Saturation

2 phases to find optimal equivalent expression (e.g. computation graph)

Exploration Extraction

Repurpose for tensor graph superoptimization

» Extensions to standard equality saturation

« Multiple output subgraphs [exploration] - note: makes e-graph large!

Copl) Copit1)

[

/G N

. /m; n‘;;;/‘,:’! m; n;u/‘
* No cycles for tensor computation graphs \/}\f‘/ o

Tensat: Extraction

 Cost model;

Minimize: f(z) = Z Ci;

« Each operation (1-1 with e-node)
associated with a cost Subject to:

« Total cost = sum of costs of all operations

in resulting graph
Vi,Vm € h;,z; < Z xj,

Jj€em
Vi,Vm € h’iatg(i) —tm — €+ A(l — :Lz) >0,
VYm,0<t,, <1,

» Greedy extraction vs ILP extraction

 ILP struggles with cycle constraints

Tensat: Cycle Filtering

Revisiting the exploration step

 Idea: filter for cycles in exploration phase
» Naive approach checking for each substitution
» Efficient implementation: for each iteration

* Pre-filtering: create a list of descendant e-classes for each node

* For each substitution, check with descendants list to see whether it causes
cycle

* Post-processing: find all cycles created in iteration via DFS, remove last
node that causes the cycle

Experiments

Comparison with TASO

70 BN TASO mEm Tensat

60

B [
o o

w
o

Speedup percentage

20

10

“35?‘““ a‘?ﬁ(‘ \\es“di‘as“e“:queﬂe. NGO \nceP

Figure 4. Speedup percentage of the optimized
graph with respect to the original graph: TASO v.s.
TENSAT. Each setting (optimizer x benchmark)
is run for five times, and we plot the mean and

standard error for the measurements.

\ ¥

)
=
\nee?™

Il TASO total TASO best WM Tensat

._.
o

w

|

[ary
o
N

13.4x

Optimizer time (seconds)
=
o

I I 115.7).

9.5x

=
o
o

34.6x
20.0x 127.4x

sisx I
A e. G X- =1
NEC e NP \ee? e

379.4x

\) X X
west B el

Figure 5. Optimization time (log scale): TASO
v.s. TENSAT. “TASO total” is the total time of
TASO search. “TASO best” indicates when TASO
found its best result; achieving this time would
require an oracle telling it when to stop.

10+

Speedup percentage

—— TASO
—=— Tensat

0 20 40 60
Optimizer time (seconds)

Figure 6. Speedup over opti-
mization time for TASO and
TENSAT, on Inception-v3. We
use a timeout of 60 seconds.

Experiments

Multiple output subgraphs

90 103
o 80)
E S 102.
c 701 g
3 @
qL) 60' | 1 | i Q 101.
Q
o 30 £
=] —
D 201 '//\ § 10°;
()]
10' = : - 8.10_1
0 o; = i 3 3

#iter of multi pattern rewrites

#iter of multi pattern rewrites

#enodes

#iter of multi pattern rewrites

—=— NasRNN
—=— BERT
—=— ResNeXt
—=— NasNet-A
—a— Squeeze.
—=— VGG
—=— Incept.

Figure 7. Effect of varying the number of iterations of multi-pattern rewrites kmuii. For BERT, NasNet-A, NasRNN, Inception-v3, the ILP
solver times out at one hour for knui = 3. Left: speedup of the optimized graphs (the y-axis is split for clarity). Middle: time taken by
TENSAT. Right: final e-graph size (number of e-nodes). The middle and right figures are in log scale.

In summary
Tensat

* Framework for tensor graph super-optimization via graph substitutions
e search algorithm using equality saturation
« extensions for tensor computation graphs:
 multiple output subgraphs
 cycle filtering

e run-time and optimization time speed ups compared to TASO

Discussion + Questions

» Changing cost model to incorporate other hardware configurations (e.g. parallel execution of operations)

* [s the solution a global optimum?
 cycle filtering
 user decides number of multiple output subgraphs

» [added after Q&A] how big does the e-graph really grow? Implementation limits number of nodes. Hard to
grow until saturation

» [added after Q&A] local cost model (they currently use operation run-time vs global one)
* Reasons for extraction algorithms explored? Any others?

* Heat-map for which graph substitutions were made for each architecture (like in TASO paper) would be interesting

Thank you!

Questions?

References

Yichen Yang, Phitchaya Mango Phothilimtha, Yisu Remy Wang, Max Willsey, Sudip Roy, and
Jacques Pienaar. 2021. Equality Saturation for Tensor Graph Superoptimization. In Proceedings of
the 4th MLSys Conference, San Jose, CA, USA (2021). https://doi.org/10.48550/arXiv.2101.01332

Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski, Matei Zaharia, and Alex Aiken. 2019.
TASO: optimizing deep learning computation with automatic generation of graph substitutions. In
Proceedings of the 27th ACM Symposium on Operating Systems Principles (SOSP '19).
Association for Computing Machinery, New York, NY, USA, 47-62. https://doi.org/
10.1145/3341301.3359630

https://egraphs-good.qgithub.io/

https://slideslive.com/38952736/oral-equality-saturation-for-tensor-graph-superoptimization?
ref=recommended

https://doi.org/10.48550/arXiv.2101.01332
https://egraphs-good.github.io/
https://slideslive.com/38952736/oral-equality-saturation-for-tensor-graph-superoptimization?ref=recommended
https://slideslive.com/38952736/oral-equality-saturation-for-tensor-graph-superoptimization?ref=recommended

More experiments

Extraction , With cycle Without Exploration time (s) kpug Vanilla Efficient
time (s) muitl real int cycle
| 0.18 0.17
I 096 098 0.16 BERT
BERT 2 3600 >3600 510.3 2 32.9 0.89
1 1116 1137 0.32 | 1.30 0.08
NasRNN 5 23600 >3600 3567 NasRNN 7 2032 1.47
I 424 438 1.81
NasNet-A | 3.76 1.27
2 >3600 >3600 75.1 -
NasNet-A > 53600 8.62

Table 5. Effect of whether or not to include cycle constraints in ILP
on extraction time (in seconds), on BERT, NasRNN, and NasNet- Table 6. Comparison between vanilla cycle filtering and efficient

?ﬁ dF Sgtlh: Xieercsgf-tiiZ;S%J:ih?gpsfsob?gf (‘)‘rs(;grg stlglg?;afles cycle filtering, on the exploration phase time (in seconds) for BERT,
1 1 1 1 1 m-
= polog NasRNN, and NasNet-A.

More experiments

Graph Runtime (ms) Original Greedy ILP

BERT 1.88 1.88 1.73
NasRNN 1.85 1.15 1.10
NasNet-A 17.8 22.5 16.6

Table 4. Comparison between greedy extraction and ILP extrac-
tion, on BERT, NasRNN, and NasNet-A. This table shows the
runtime of the original graphs and the optimized graphs by greedy
extraction and ILP extraction. The exploration phase is run with
kmulti = L.

Example

Input: (a X 2)/2
Rewrite rules:

xX2-x<xl

(x X y)/z = xX(y/z2)

x/x — 1

xX1—-x

Apply first rewrite rule

Example

Input: (a X 2)/2
Rewrite rules:

xX2-x<xl

(xXy)/z = xX(y/2)

x/x — 1

xX1—-x

Apply second rewrite rule

Example

Input: (a X 2)/2
Rewrite rules:

xX2-x<xl

(xXy)/z - xX(y/2)

x/x =1

xX1—-x

Apply third rewrite rule

Exampl
Input: (ax2)/2=ax2/2)=ax1=a

Substitutions: e
P
xX2-x<xl S, -
¢ /! .-
, 0,
(xXy)/z—=>xX(/72) X
[T
x/x —> 1 " -
xX1—->x .
\.. —

, Applied all four rewrite rules
Explore until saturated or user-

specified number of iterations

Egg implementation

2 core operations (as implemented on egg):
add to add e-nodes and union to merge e-classes

Defined so that it keeps e-nodes unique (no two e-nodes with the same
operators and equivalent children in either the same or different e-classes)

