
Presented by Sarah Zhao, R244 (11.16.2022)

Equality Saturation for Tensor
Graph Superoptimization
Yichen Yang, Pitchaya Mangpo Phothilimtha, Yisu Remy Wang,
Max Willsey, Sudip Roy, and Jacques Pienaar (2021)

Motivation

• Tensor graph super-optimization via graph substitutions (aka rewrite rules)

• TASO: generation of graph substitutions

• Searching space of resulting graphs

• Greedy algorithm and sequential application of substitutions

• Limits search space and not necessarily optimal

• Inefficient (exponential scaling)

How to improve?
Tensat!

• Builds on TASO graph substitutions and improves search algorithm

• Equality Saturation [Tate et al., 2009]

• Idea: explore everything compactly first, then extract optimal solution

• Uses a data structure called e-graphs for compact storage [Gregory Nelson PhD
Thesis, 1980]

• 2 main phases: exploration and extraction

• Faster run-time and shorter search time compared to TASO

Equality Saturation
All about equivalences

e-graphs: set of equivalence classes (e-classes) each of which contain e-nodes

e-nodes: an operator with children that are e-classes

Input: (a × 2)/2

Example - Exploration
Input: = (a × 2)/2 (a ≪ 1)/2

Initial e-graph

Substitution:

x × 2 → x ≪ 1

Substitutions:

x × 2 → x ≪ 1

(x × y)/z → x × (y/z)

x/x → 1

x × 1 → x

Example - Exploration
Input: = (a × 2)/2 (a ≪ 1)/2

Apply first rewrite rule

Substitutions:

x × 2 → x ≪ 1

(x × y)/z → x × (y/z)

x/x → 1

x × 1 → x

Example - Exploration
Input: = = = (a × 2)/2 a × (2/2) a × 1 a
Substitutions:

x × 2 → x ≪ 1

(x × y)/z → x × (y/z)

x/x → 1

x × 1 → x

Applied all four rewrite rules
Explore until saturated or user-
specified number of iterations

Equality Saturation
2 phases to find optimal equivalent expression (e.g. computation graph)

Exploration Extraction

Repurpose for tensor graph superoptimization

• Extensions to standard equality saturation

• Multiple output subgraphs [exploration] - note: makes e-graph large!

• No cycles for tensor computation graphs

Tensat: Extraction

• Cost model:

• Each operation (1-1 with e-node)
associated with a cost

• Total cost = sum of costs of all operations
in resulting graph

• Greedy extraction vs ILP extraction

• ILP struggles with cycle constraints

Tensat: Cycle Filtering
Revisiting the exploration step

• Idea: filter for cycles in exploration phase

• Naive approach checking for each substitution

• Efficient implementation: for each iteration

• Pre-filtering: create a list of descendant e-classes for each node

• For each substitution, check with descendants list to see whether it causes
cycle

• Post-processing: find all cycles created in iteration via DFS, remove last
node that causes the cycle

Experiments
Comparison with TASO

Experiments
Multiple output subgraphs

In summary
Tensat

• Framework for tensor graph super-optimization via graph substitutions

• search algorithm using equality saturation

• extensions for tensor computation graphs:

• multiple output subgraphs

• cycle filtering

• run-time and optimization time speed ups compared to TASO

Discussion + Questions

• Changing cost model to incorporate other hardware configurations (e.g. parallel execution of operations)

• Is the solution a global optimum?

• cycle filtering

• user decides number of multiple output subgraphs

• [added after Q&A] how big does the e-graph really grow? Implementation limits number of nodes. Hard to
grow until saturation

• [added after Q&A] local cost model (they currently use operation run-time vs global one)

• Reasons for extraction algorithms explored? Any others?

• Heat-map for which graph substitutions were made for each architecture (like in TASO paper) would be interesting

Thank you!

Questions?

References
Yichen Yang, Phitchaya Mango Phothilimtha, Yisu Remy Wang, Max Willsey, Sudip Roy, and
Jacques Pienaar. 2021. Equality Saturation for Tensor Graph Superoptimization. In Proceedings of
the 4th MLSys Conference, San Jose, CA, USA (2021). https://doi.org/10.48550/arXiv.2101.01332

Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski, Matei Zaharia, and Alex Aiken. 2019.
TASO: optimizing deep learning computation with automatic generation of graph substitutions. In
Proceedings of the 27th ACM Symposium on Operating Systems Principles (SOSP '19).
Association for Computing Machinery, New York, NY, USA, 47–62. https://doi.org/
10.1145/3341301.3359630

https://egraphs-good.github.io/

https://slideslive.com/38952736/oral-equality-saturation-for-tensor-graph-superoptimization?
ref=recommended

https://doi.org/10.48550/arXiv.2101.01332
https://egraphs-good.github.io/
https://slideslive.com/38952736/oral-equality-saturation-for-tensor-graph-superoptimization?ref=recommended
https://slideslive.com/38952736/oral-equality-saturation-for-tensor-graph-superoptimization?ref=recommended

More experiments

More experiments

Example
Input: (a × 2)/2

Apply first rewrite rule

Rewrite rules:

x × 2 → x ≪ 1

(x × y)/z → x × (y/z)

x/x → 1

x × 1 → x

Example
Input: (a × 2)/2
Rewrite rules:

x × 2 → x ≪ 1

(x × y)/z → x × (y/z)

x/x → 1

x × 1 → x

Apply second rewrite rule

Example
Input: (a × 2)/2
Rewrite rules:

x × 2 → x ≪ 1

(x × y)/z → x × (y/z)

x/x → 1

x × 1 → x

Apply third rewrite rule

Exampl
Input: = = = (a × 2)/2 a × (2/2) a × 1 a
Substitutions:

x × 2 → x ≪ 1

(x × y)/z → x × (y/z)

x/x → 1

x × 1 → x

Applied all four rewrite rules
Explore until saturated or user-
specified number of iterations

Egg implementation

2 core operations (as implemented on egg):

add to add e-nodes and union to merge e-classes

Defined so that it keeps e-nodes unique (no two e-nodes with the same
operators and equivalent children in either the same or different e-classes)

