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Motivation

• Tensor graph super-optimization via graph substitutions (aka rewrite rules)


• TASO: generation of graph substitutions


• Searching space of resulting graphs


• Greedy algorithm and sequential application of substitutions


• Limits search space and not necessarily optimal


• Inefficient (exponential scaling)



How to improve?
Tensat!

• Builds on TASO graph substitutions and improves search algorithm


• Equality Saturation [Tate et al., 2009]


• Idea: explore everything compactly first, then extract optimal solution


• Uses a data structure called e-graphs for compact storage [Gregory Nelson PhD 
Thesis, 1980] 

• 2 main phases: exploration and extraction 

• Faster run-time and shorter search time compared to TASO



Equality Saturation
All about equivalences

e-graphs: set of equivalence classes (e-classes) each of which contain e-nodes


e-nodes: an operator with children that are e-classes 

Input: (a × 2)/2



Example - Exploration
Input:  = (a × 2)/2 (a ≪ 1)/2

Initial e-graph 

Substitution:



x × 2 → x ≪ 1

Substitutions:











 

x × 2 → x ≪ 1

(x × y)/z → x × (y/z)

x/x → 1

x × 1 → x



Example - Exploration
Input:  = (a × 2)/2 (a ≪ 1)/2

Apply first rewrite rule

Substitutions:











 

x × 2 → x ≪ 1

(x × y)/z → x × (y/z)

x/x → 1

x × 1 → x



Example - Exploration 
Input:  =  =  = (a × 2)/2 a × (2/2) a × 1 a
Substitutions:











 

x × 2 → x ≪ 1

(x × y)/z → x × (y/z)

x/x → 1

x × 1 → x

Applied all four rewrite rules
Explore until saturated or user-
specified number of iterations



Equality Saturation
2 phases to find optimal equivalent expression (e.g. computation graph)

Exploration Extraction



Repurpose for tensor graph superoptimization

• Extensions to standard equality saturation


• Multiple output subgraphs [exploration] - note: makes e-graph large! 


• No cycles for tensor computation graphs



Tensat: Extraction

• Cost model:


• Each operation (1-1 with e-node) 
associated with a cost


• Total cost = sum of costs of all operations 
in resulting graph


• Greedy extraction vs ILP extraction 

• ILP struggles with cycle constraints



Tensat: Cycle Filtering
Revisiting the exploration step

• Idea: filter for cycles in exploration phase


• Naive approach checking for each substitution 


• Efficient implementation: for each iteration


• Pre-filtering: create a list of descendant e-classes for each node


• For each substitution, check with descendants list to see whether it causes 
cycle 


• Post-processing: find all cycles created in iteration via DFS, remove last 
node that causes the cycle



Experiments
Comparison with TASO



Experiments
Multiple output subgraphs



In summary
Tensat

• Framework for tensor graph super-optimization via graph substitutions 


• search algorithm using equality saturation 

• extensions for tensor computation graphs:


• multiple output subgraphs


• cycle filtering 


• run-time and optimization time speed ups compared to TASO



Discussion + Questions

• Changing cost model to incorporate other hardware configurations (e.g. parallel execution of operations)


• Is the solution a global optimum? 


• cycle filtering


• user decides number of multiple output subgraphs


• [added after Q&A] how big does the e-graph really grow? Implementation limits number of nodes. Hard to 
grow until saturation


• [added after Q&A] local cost model (they currently use operation run-time vs global one)


• Reasons for extraction algorithms explored? Any others?


• Heat-map for which graph substitutions were made for each architecture (like in TASO paper) would be interesting



Thank you!



Questions?
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More experiments



More experiments



Example
Input: (a × 2)/2

Apply first rewrite rule

Rewrite rules:











 

x × 2 → x ≪ 1

(x × y)/z → x × (y/z)

x/x → 1

x × 1 → x



Example
Input: (a × 2)/2
Rewrite rules:











 

x × 2 → x ≪ 1

(x × y)/z → x × (y/z)

x/x → 1

x × 1 → x

Apply second rewrite rule



Example
Input: (a × 2)/2
Rewrite rules:











 

x × 2 → x ≪ 1

(x × y)/z → x × (y/z)

x/x → 1

x × 1 → x

Apply third rewrite rule



Exampl
Input:  =  =  = (a × 2)/2 a × (2/2) a × 1 a
Substitutions:











 

x × 2 → x ≪ 1

(x × y)/z → x × (y/z)

x/x → 1

x × 1 → x

Applied all four rewrite rules
Explore until saturated or user-
specified number of iterations



Egg implementation

2 core operations (as implemented on egg): 


add to add e-nodes and union to merge e-classes


Defined so that it keeps e-nodes unique (no two e-nodes with the same 
operators and equivalent children in either the same or different e-classes)


