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Background: Tensor Program
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Background: Tensor Program Transformations
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Background: Current Systems Consider only Fully Equivalent Transformations
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l‘ Pro: better performance
|ﬁPro: preserve functionality » Faster ML operators
* More efficient tensor layouts
I’Con: miss optimization opportunities » Hardware-specific optimizations
|’ Con: potential accuracy loss
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Current Systems Consider only Fully

Equivalent Transformations
vp. Y[p] = Z[p] 3p. Y[p) # Z[p)
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Is it possible to exploit partially equivalent transformations to
improve performance while preserving equivalence?
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Fully Equivalent Transformations Partially Equivalent Transformations
l‘ Pro: better performance
I‘Pro: preserve functionality * Faster ML operators
* More efficient tensor layouts
I’Con: miss optimization opportunities » Hardware-specific optimizations

|’ Con: potential accuracy loss
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Motivating Example
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Source: Zhihao Jia. (2021).
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* Transformation and correction lead to 1.2x speedup for ResNet-18

» Correction preserves end-to-end equivalence
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PET

* First tensor program optimizer with partially equivalent transformations

by combining fully and partially equivalent
transformations

. outperform existing optimizers by up to
: automated corrections to preserve end-to-end equivalence
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PET Overview
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Source: Zhihao Jia. (2021).
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Key Challenges

1. How to generate partially equivalent transformations?

2. How to correct them?
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Superoptimization adapted from TASO'

Enumerate all possible programs up to a
fixed size using available operators
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Operators supported by
hardware backend

1. TASO: Optimizing Deep Learning Computation with Automated Generation of Graph Substitutions. SOSP’19.
Source: Zhihao Jia. (2021).
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Mutant Generator
Superoptimization adapted from TASO'

Programs with the same input/output
shapes are potential mutants

(Sub)program

Discover both fully and partially
equivalent transformations

4

Operators supported by
hardware backend

1. TASO: Optimizing Deep Learning Computation with Automated Generation of Graph Substitutions. SOSP’19.

Source: Zhihao Jia. (2021).
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Challenges: Examine Transformations

1. Which part of the computation is not equivalent?
2. How to correct the results?

Source: Zhihao Jia. (2021).
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A Strawman Approach

» Step 1: Explicitly consider all II N II
v

output positions (m positions)

« Step 2: For each position p, ! !
exgmine all possible inputs
(n inputs) i Tp
\\\ \//

@ vI. f(DIp] = g(D[p]?

Require O(m * n) examinations, but both m and n are too
large to explicitly enumerate
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Multi-Linear Tensor Program (MLTP)

* A program f is multi-linear if the output is linear to all inputs
e f(Il, ...,X, ...,In) + f(Il, ...,Y, wnnip In) = f(I]_, ,X + Y, ...,In)
o 4= Fllyy Xy coply ) = Fllyess s @ X5 L)

 DNN computation = MLTP + non-linear activations
Majority of the computation

O(m * n) examinations
in strawman approach

O(1) examinations in
PET’s approach
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No Need to Enumerate All Output Positions

H

Group all output positions with an identical
summation interval into a region

*Theorem 1: For two MLTPs fand g, if f=g
for O(1) positions in a region, then f=g for
all positions in the region

region
Only need to examine O(1) positions for o
each region. —
Complexity: O(m * n) — O(n) — - Z Z Z 11>(<di ’z ; : ;Vyw; y)
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Summation interval

*Proof details available in the paper
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No Need to Consider All Possible Inputs

Examining equivalence for a single position I I
is still challenging

| |
\ 4 v
*Theorem 2: If 3/. f(I)|p| # g(I)|p|, then — —

the probability that f and g give identical

results on f random integer inputs is (2—11)t P

Run t random tests for each position T}

Complexity: O(n) — O(f) = O(1) vVI. f(D|p| = g(D|p]?

*Proof details available in the paper
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Mutant Corrector
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Mutant Corrector
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Goal: quickly and efficiently correcting
the outputs of a mutant program

Step 1: recompute the incorrect outputs
using the original program
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Source: Zhihao Jia. (2021).
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Mutant Corrector

Goal: quickly and efficiently correcting
the outputs of a mutant program

Step 1: recompute the incorrect outputs
using the original program

Step 2: opportunistically fuse correction
kernels with other operators

Correction introduces less than

1% overhead
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Program Optimizer

Input E Mutant
Program Optimizer ~ Fro9™™

« Beam search
* Optimizing a DNN architecture \
takes less than 30 minutes é MLTP
Search-Based
Program

A Generator |

Optimizer
Other optimizations: | =l """|=
* Operator fusion
« Constant folding Mutants w/ Corrections
 Redundancy elimination

Optimized
Program

Mutant

e - Optimizer

Mutant

Generator &
Corrector

Program

Source: Zhih

ao Jia. (2021).


https://www.usenix.org/conference/osdi21/presentation/wang

End-to-end Inference Performance (Nvidia V100 GPU)

mTensorFlow mTensorRT = TASO mPET
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PET outperforms existing optimizers by 1.2-2.5x

by combining fully and partially equivalent transformations
Source: Zhihao Jia. (2021).
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More Evaluation in Paper

1. A case study on tensor-, operator-, and graph-level optimizations discovered
by PET

2. Both fully and partially equivalent transformations are critical to performance

3. PET consistently outperforms existing optimizers on various backends
(cuDNN/cuBLAS, TVM, Ansor)

4. Partially equivalent transformations w/ corrections can directly benefit
existing optimizers
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PET

» A tensor program optimizer with partially equivalent transformations and
automated corrections

rger optimiza by combining fully and partially equivalent
transformations
| ce: outperform existing optimizers by up to
: automated corrections to preserve end-to-end equivalence
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Criticism - pros/cons

* While PET outperforms rule-based optimizers, it only discovers transformations between expressions that can
be constructed using only the predefined operators.

* PET attempts to save human effort in DNN optimization by searching for optimised transformations given a
set of operators. PET then introduces inequivalent transformations and correction mechanisms to find even
more optimizations. ‘

» Existing attempts to improve a DNN’s tensor algebra expression only address expressions representable by a
fixed set of predefined operators (e.g. matrix multiplication), leaving out possible optimization opportunities
between general expressions. l

* We can improve the design to explore a much larger search space of general expressions. By deriving tensor
algebra expressions, we can broaden the search space from predefined operator representable (POR)
expressions to general expressions.



