PET: Optimizing Tensor Programs with Partially Equivalent
Transformations and Automated Corrections

KH. Wang, J. Zhai, M. Gao, Z. Ma, S. Tang, L. Zheng, Y. Li, K. Rong, Y. Chen, and Z. Jia
OSDI 2021

Background: Tensor Program

| convaxs | | ,\‘ A linear algebra operator (e.g., convolution, matrix mul)
! o il or a non-linear activation (e.g., relu, sigmoid)

| relu |

.

I conv3x3 |

Source: Zhihao Jia. (2021).

https://www.usenix.org/conference/osdi21/presentation/wang

Background: Tensor Program Transformations

_____ ‘_,.{"__‘ A— Fuse conv + relu pool

1 [
'l conv |il]l conv m — e——— Pd:}.i_ ———-
: i : : i 4 : conv3x3 : : convixl ||
| £ o et e vt
I relu : [relu |1 . D B, Ty Tt mmmymmmed
l---.‘.---: o v —/ conv3x3
Fuse convs \
conv
\ add
add *
* relu
relu
Input Program i Optimized Program

Program Transformations
Source: Zhihao Jia. (2021).

https://www.usenix.org/conference/osdi21/presentation/wang

Background: Current Systems Consider only Fully Equivalent Transformations

vp. Y[p] = Z|p] Ap. Y[p] # Z[p]
Y 7 4 Y Z
T T 1 1
aee Conv ;
T _— . Délated ¢ o
;onv%‘:\ = Add \ / on\:\ / \
w1 wz X &1 &2 X X W X w
Fully Equivalent Transformations Partially Equivalent Transformations

l‘ Pro: better performance
|ﬁPro: preserve functionality » Faster ML operators
* More efficient tensor layouts
I’Con: miss optimization opportunities » Hardware-specific optimizations
|’ Con: potential accuracy loss

https://www.usenix.org/conference/osdi21/presentation/wang

Current Systems Consider only Fully

Equivalent Transformations
vp. Y[p] = Z[p] 3p. Y[p) # Z[p)

Y Z

Is it possible to exploit partially equivalent transformations to
improve performance while preserving equivalence?

W, W, X w, W, X
Fully Equivalent Transformations Partially Equivalent Transformations
l‘ Pro: better performance
I‘Pro: preserve functionality * Faster ML operators
* More efficient tensor layouts
I’Con: miss optimization opportunities » Hardware-specific optimizations

|’ Con: potential accuracy loss

https://www.usenix.org/conference/osdi21/presentation/wang

Motivating Example

Input Program

v
reshape & transpose

o
| m

Z
%

Z
Y/
reshape & transpose

7

.

Incorrect results

Partially Equivalent Transformation

Correcting Results

Source: Zhihao Jia. (2021).

https://www.usenix.org/conference/osdi21/presentation/wang

Motivating Example

i

v
reshape & transpose

\
%
7
%

/A

N

Input Program

%,
v
reshape & transpose

N

Incorrect results

Correcting Results

* Transformation and correction lead to 1.2x speedup for ResNet-18

» Correction preserves end-to-end equivalence

https://www.usenix.org/conference/osdi21/presentation/wang

PET

* First tensor program optimizer with partially equivalent transformations

by combining fully and partially equivalent
transformations

. outperform existing optimizers by up to
: automated corrections to preserve end-to-end equivalence

https://www.usenix.org/conference/osdi21/presentation/wang

PET Overview

%

% Mutant o Mutant iy Program =
4 Generator pu 4 %—/ Corrector 4 % o d Optimizer
Input @ Optimized
Program Mutant Corrected Program

Programs Mutants

Source: Zhihao Jia. (2021).

https://www.usenix.org/conference/osdi21/presentation/wang

Key Challenges

1. How to generate partially equivalent transformations?

2. How to correct them?

https://www.usenix.org/conference/osdi21/presentation/wang

Mutant S BN Program
i Generator g 4 Optimizer

Mutant Generator

Superoptimization adapted from TASO'

Enumerate all possible programs up to a
fixed size using available operators

Y Mutant
14 Generator

Input
(Sub)program

N 7’

Operators supported by
hardware backend

1. TASO: Optimizing Deep Learning Computation with Automated Generation of Graph Substitutions. SOSP’19.
Source: Zhihao Jia. (2021).

https://www.usenix.org/conference/osdi21/presentation/wang

Mutant A Mutant Program

d Generator gadNComector g Optimizer

Mutant Generator
Superoptimization adapted from TASO'

Programs with the same input/output
shapes are potential mutants

(Sub)program

Discover both fully and partially
equivalent transformations

4

Operators supported by
hardware backend

1. TASO: Optimizing Deep Learning Computation with Automated Generation of Graph Substitutions. SOSP’19.

Source: Zhihao Jia. (2021).

https://www.usenix.org/conference/osdi21/presentation/wang

Challenges: Examine Transformations

1. Which part of the computation is not equivalent?
2. How to correct the results?

Source: Zhihao Jia. (2021).

https://www.usenix.org/conference/osdi21/presentation/wang

A Strawman Approach

» Step 1: Explicitly consider all II N II
v

output positions (m positions)

« Step 2: For each position p, ! !
exgmine all possible inputs
(n inputs) i Tp
\\\ \//

@ vI. f(DIp] = g(D[p]?

Require O(m * n) examinations, but both m and n are too
large to explicitly enumerate

https://www.usenix.org/conference/osdi21/presentation/wang

Multi-Linear Tensor Program (MLTP)

* A program f is multi-linear if the output is linear to all inputs
e f(Il, ...,X, ...,In) + f(Il, ...,Y, wnnip In) = f(I]_, ,X + Y, ...,In)
o 4= Fllyy Xy coply) = Fllyess s @ X5 L)

 DNN computation = MLTP + non-linear activations
Majority of the computation

O(m * n) examinations
in strawman approach

O(1) examinations in
PET’s approach

https://www.usenix.org/conference/osdi21/presentation/wang

No Need to Enumerate All Output Positions

H

Group all output positions with an identical
summation interval into a region

*Theorem 1: For two MLTPs fand g, if f=g
for O(1) positions in a region, then f=g for
all positions in the region

region
Only need to examine O(1) positions for o
each region. —
Complexity: O(m * n) — O(n) — - Z Z Z 11>(<di ’z ; : ;Vyw; y)
2\, 0,AR,

d=0 x=—1y=-1

Summation interval

*Proof details available in the paper

https://www.usenix.org/conference/osdi21/presentation/wang

No Need to Consider All Possible Inputs

Examining equivalence for a single position I I
is still challenging

| |
\ 4 v
*Theorem 2: If 3/. f(I)|p| # g(I)|p|, then — —

the probability that f and g give identical

results on f random integer inputs is (2—11)t P

Run t random tests for each position T}

Complexity: O(n) — O(f) = O(1) vVI. f(D|p| = g(D|p]?

*Proof details available in the paper

https://www.usenix.org/conference/osdi21/presentation/wang

Mutant Corrector

Mutant Corrector

\J
reshape & transpose

i

=

7

|

Goal: quickly and efficiently correcting
the outputs of a mutant program

t

v

reshape & transpose

%,
2
7
2
V

Mutant Program Source: Zhihao Jia. (2021).

---------------------1

https://www.usenix.org/conference/osdi21/presentation/wang

———— — —————————— —— —— — —

Mutant Corrector

reshape & transpose

Goal: quickly and efficiently correcting
the outputs of a mutant program

Step 1: recompute the incorrect outputs
using the original program

reshape & transpose

N

N

N

Source: Zhihao Jia. (2021).
Mutant Program 19

https://www.usenix.org/conference/osdi21/presentation/wang

Mutant Corrector

Goal: quickly and efficiently correcting
the outputs of a mutant program

Step 1: recompute the incorrect outputs
using the original program

Step 2: opportunistically fuse correction
kernels with other operators

Correction introduces less than

1% overhead

e e e e

--------- *-------------—--- =

reshape & transpose

H.H'%

reshape & transpose Kernel Fusion

7
%,
Z
%
%,

https://www.usenix.org/conference/osdi21/presentation/wang

Program Optimizer

Input E Mutant
Program Optimizer ~ Fro9™™

« Beam search
* Optimizing a DNN architecture \
takes less than 30 minutes é MLTP
Search-Based
Program

A Generator |

Optimizer
Other optimizations: | =l """|=
* Operator fusion
« Constant folding Mutants w/ Corrections
 Redundancy elimination

Optimized
Program

Mutant

e - Optimizer

Mutant

Generator &
Corrector

Program

Source: Zhih

ao Jia. (2021).

https://www.usenix.org/conference/osdi21/presentation/wang

End-to-end Inference Performance (Nvidia V100 GPU)

mTensorFlow mTensorRT = TASO mPET

-
(3}

140
120
100

80

60 1.2x
2.5x 40 .
20 L 1.4x
0

ResNet-18 CSRNet Inception-v3 BERT ResNet3D-18

-
N

©

Runtime (ms)
»

w

o

PET outperforms existing optimizers by 1.2-2.5x

by combining fully and partially equivalent transformations
Source: Zhihao Jia. (2021).

https://www.usenix.org/conference/osdi21/presentation/wang

More Evaluation in Paper

1. A case study on tensor-, operator-, and graph-level optimizations discovered
by PET

2. Both fully and partially equivalent transformations are critical to performance

3. PET consistently outperforms existing optimizers on various backends
(cuDNN/cuBLAS, TVM, Ansor)

4. Partially equivalent transformations w/ corrections can directly benefit
existing optimizers

https://www.usenix.org/conference/osdi21/presentation/wang

PET

» A tensor program optimizer with partially equivalent transformations and
automated corrections

rger optimiza by combining fully and partially equivalent
transformations
| ce: outperform existing optimizers by up to
: automated corrections to preserve end-to-end equivalence

https://www.usenix.org/conference/osdi21/presentation/wang

Criticism - pros/cons

* While PET outperforms rule-based optimizers, it only discovers transformations between expressions that can
be constructed using only the predefined operators.

* PET attempts to save human effort in DNN optimization by searching for optimised transformations given a
set of operators. PET then introduces inequivalent transformations and correction mechanisms to find even
more optimizations. ‘

» Existing attempts to improve a DNN’s tensor algebra expression only address expressions representable by a
fixed set of predefined operators (e.g. matrix multiplication), leaving out possible optimization opportunities
between general expressions. l

* We can improve the design to explore a much larger search space of general expressions. By deriving tensor
algebra expressions, we can broaden the search space from predefined operator representable (POR)
expressions to general expressions.

