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Big Data Analytics jobs are very
popular "nowadays" (2017)

Many cloud Many machine Cluster Size
providers types e Tens of possible

* Azure e CPUs, GPUs, configurations

o AWS configurable VMs
* Google Cloud
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HUNDREDS OF
POSSIBLE
CONFIGURATIONS




Good conf iguration = Better perf ormance + Lower cost

worst running time

Same cost = . =3
best running time

the most expensive conf iguration
Same perf ormance = . . = 12
cheapest conf iguration




Find best cloud configuration (minimizes
cost for a given performance threshold) for a
recurring jobs, given its representative

workload.

Problem

40% of the jobs is cloud are recurring.




Low Overhead

e Run few
configuration

Coordinate Ernest
Challanges descent .
Adaptivity High Accuracy
e Works across all data Try all e Close to the global
configs

minima

dpps
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Low Overhead

e Run few
configuration

Coordinate Ernest
Challanges descent ,
Bayesian
Optimization
Adaptivity High Accuracy
e Works across all data Try all e Close to the global
configs

minima

dpps
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Cloud has
multiplicative noise

- cloud resources are shared, so if we run the same
workload, same job, with same configuration, the
running time and cost might not be the same



Price per unit of Time

time \ /

minimize ~C(¥) = P(x) x T (%) 7@ =T@(1+¢.)
subject to T (X) < Tnax C(x)=CE)(1+&)

Log(cost)

minimize logC(X) = log P(¥) +log T (X)

X
subjectto  log T’ (X) < log Tpax
We use BO to minimize log C(X) instead of C(X)

logC(X) = logC(X) +1og (1 + &)
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Step-2 Step-3

Step-1

el i e: Update perf. model
Start with initial
art with initia (re-compute confidence |7
cloud configs.

interval with BO)

Select and run a new config
(select next sample with the
best gain estimated by BO)

—

Workflow

Step-5

Confident that we
find the best
configuration?

Step-4
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Input:

* Five popular analytical jobs

* 66 reasonable configurations, of four families in
Amazon EC2

Objective

Evaluation * Minimize cost, within a performance threshold

Results:

CheryPick = 45-90% to pick optimal solution, otherwise
finds a solution within 5%

Alternatives = 75% more time to get to 45% overhead




Results

CherryPick (EI=10%) CherryPick (EI=10%)
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Figure 7: Comparing CherryPick with coordinate descent. The bars show
10th and 90th percentile.
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Criticism

The algorithm is strong but the way they phrase it
makes it seem weaker "45-90% chance to find the
optimal".

Prior set to GP and acquisition to Expected
Improvement, a bit restrictive? (ex. conjugate

distribution for prior)

Representative workloads are needed. How can one
get them?

Does it actually converge to a minima for noisy prior?
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