Tensor Program Optimization with Probabilistic Programs

Junru Shao, Xiyou Zhou, Siyuan Feng, Bohan Hou, Ruihang Lai,

Shuntian Liu 9 Nov 2022

Hongyi Jin, Wuwei Lin, Masahiro Masuda, Cody Hao Yu, Tianqi Chen

Code examples adapted from original paper

Optimising Tensor Program

Key elements in automatic tensor program optimization

Probabilistic Programming (PP)

- Probabilistic programming is not about writing software that behaves probabilistically.
- The key insight in PP is that statistical modelling can, when you do it enough, start to feel a lot like programming
- a probabilistic programming language is an ordinary programming language with rand and a great big pile of related tools that help you understand the program's statistical behaviour

Related work

- Halide (2013)
 - a language for fast, portable computation on images and tensors
- TVM (2018)
 - Template guided search space
- Ansor (2020)
 - Auto scheduler for subgraphs
- Difficult for expert to express domain knowledge in them

MetaSchedule, a domain-specific probabilistic programming language abstraction to construct a rich search space of tensor programs.

MetaSchedule, a domain-specific probabilistic programming language abstraction to construct a rich search space of tensor programs.

Dense:

for i in range(512): for j in range(256): for k in range(16): C[...] += ... # ReLU: for i' in range(512): for j' in range(256): D[...]

for i in range(512):
 for j in range(256):
 for k in range(16):
 C[...] += ...

Dense:

ReLU:
for i' in range(512):
 for j' in range(256):
 D[...] = ...

for i in range(512):
 for j in range(256):
 for k in range(16):
 C[...] += ...

Dense:

ReLU:
for i' in range(512):
 for j' in range(256):
 D[...] = ...

Loop tiling

Loop fusion

Dense:

for i in range(512):
 for j in range(256):
 for k in range(16):
 C[...] += ...

ReLU:
for i' in range(512):
 for j' in range(256):
 D[...] = ...

Loop tiling

Loop fusion

- # 1 Loop tiling for Dense
- θ2, θ3 ~ Sample-Tile(j, parts=2)
- i0, i1 = Split(i, [00, 01])
- $j0, j1 = Split(j, [\theta 2, \theta 3])$
- Reorder(i0, j0, i1, j1)

$\theta 0, \theta 1 \sim \text{Sample-Tile}(i, \text{parts}=2)$

Dense: for i in range(512): for j in range(256): for k in range(16): C[...] += ...

ReLU:
for i' in range(512):
 for j' in range(256):
 D[...] = ...

for i0, j0 in grid(00, 02):
 for i1, j1 in grid(01, 03):
 for k in range(16):
 C[...] += ...

Loop tiling

op fusion

Dense:
for i in range(512):
 for j in range(256):
 for k in range(16):
 C[...] += ...

ReLU:
for i' in range(512):
for j' in range(256):
D[...] = ...

for i0, j0 in grid(00, 02):
 for i1, j1 in grid(01, 03):
 for k in range(16):

C[...] += ...

Loop tiling

Loop fusion

2 ReLU fusion Compute-At(ReLU, OReLU)

for i in range(512): for j in range(256): for k in range(16): C[...] += ...

ReLU: for i' in range(512): for j' in range(256): $\mathsf{D}[\ldots] = \ldots$

Dense:
for i in range(512):
 for j in range(256):
 for k in range(16):
 C[...] += ...

ReLU:
 for i' in range(512):
 for j' in range(256):
 D[...] = ...

Fused Dense + ReLU
θReLU : Shallow fusion under
j0

Loop tiling
for i0, j0 in grid(00, 02):
for i1, j1 in grid(01, 03):
for k in range(16):
 C[...] += ...
for i', j' in grid(04, 05):
 D[....] = ...

Modularity

- Previous program transformation modularised
- Modules are composable
- Pre-written modules
 - By domain specialist

17

Learning driven approach

- End-to-end search
- Execution traces (validation)

Learning-driven search

Performance Optimising End-to-End Deep Learning Models

Performance **Composing modules**

Performance with different search spaces.

BERT-Large Performance.

Thoughts & Critiques Opinions are my own

- Why is probabilistic programming fit for search space construction
 - After all we can just do random sampling, which does not require PP
 - Guessing because it allows expressing of domain knowledge in a simple way
 - But this is more of PP's contribution
- Evaluation comparing with hardware specific modules
 - Is this fair?
- Does not talk about searching time

Conclusions

- DSL (Probabilistic programming) for tensor program optimisation
- Rich search space construction
- Composable modules for program optimisation
- Learning driven approach based on search space specification

References

- pag.
- Design and Implementation (OSDI'20). USENIX Association, USA, Article 49, 863-879.
- Ragan-Kelley, Jonathan & Barnes, Connelly & Adams, Andrew & Paris, Sylvain & Durand, Frédo & Recomputation in Image Processing Pipelines. ACM SIGPLAN Notices. 48. 519-530. 10.1145/2499370.2462176.
- MOBILE DEVICES." (2019).

Shao, Junru et al. "Tensor Program Optimization with Probabilistic Programs." ArXiv abs/2205.13603 (2022): n.

• Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu, Ameer Haj-Ali, Yida Wang, Jun Yang, Danyang Zhuo, Koushik Sen, Joseph E. Gonzalez, and Ion Stoica. 2020. Ansor: generating high-performance tensor programs for deep learning. In Proceedings of the 14th USENIX Conference on Operating Systems

Amarasinghe, Saman. (2013). Halide: A Language and Compiler for Optimizing Parallelism, Locality, and

• Yan, Eddie Q. et al. "USING AUTOTVM TO AUTOMATICALLY GENERATE DEEP LEARNING LIBRARIES FOR

Adrian Sampson, Probabilistic programming, url: <u>http://adriansampson.net/doc/ppl.html</u>, retrieved 26 Oct 2022

