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Code examples adapted from original paper



Optimising Tensor Program

Initial Tensor Program e0 Search Space S(e0) Optimal Program e*Search Algorithm

for i in range(1024):
for j in range(1024):

for k in range(1024):

C[i, j] += A[i, k] * B[j, k]

for i0, j0 in grid(16, 8):
for i1, j1 in grid(8, 16):

for k0 in range(1024):
for i2, j2 in grid(8, 8):

C[...] += ...

for i0, j0 in grid(64, 8):
for i1, j1 in grid(4, 32):

for k0 in range(64):
for i2, j2 in grid(4, 4):

for k1 in range(16):

C[...] += ...

…

Key elements in automatic tensor program optimization

Examples
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Probabilistic Programming (PP)

• Probabilistic programming is not about writing software that behaves 
probabilistically.


• The key insight in PP is that statistical modelling can, when you do it enough, 
start to feel a lot like programming


• a probabilistic programming language is an ordinary programming language 
with rand and a great big pile of related tools that help you understand the 
program's statistical behaviour
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Related work

• Halide (2013)


• a language for fast, portable computation on images and tensors


• TVM (2018)


• Template guided search space


• Ansor (2020)


• Auto scheduler for subgraphs


• Difficult for expert to express domain knowledge in them
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MetaSchedule, a domain-specific probabilistic 
programming language abstraction to construct a rich 

search space of tensor programs.  
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MetaSchedule, a domain-specific probabilistic 
programming language abstraction to construct a rich 

search space of tensor programs.  
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MetaSchedule Probabilistic language
# Dense: 

for i in range(512):  
for j in range(256): 
for k in range(16):  
C[...] += ...  

# ReLU: 
for i' in range(512):  
for j' in range(256): 
D[...] = …
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MetaSchedule Probabilistic language
# Dense: 

for i in range(512):  
for j in range(256): 
for k in range(16):  
C[...] += ... 

# ReLU: 
for i' in range(512):  
for j' in range(256): 
D[...] = ... 
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MetaSchedule Probabilistic language
# Dense: 

for i in range(512):  
for j in range(256): 
for k in range(16):  
C[...] += ... 

Loop tiling

Loop fusion
# ReLU: 
for i' in range(512):  
for j' in range(256): 
D[...] = ... 
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MetaSchedule Probabilistic language
# Dense: 

for i in range(512):  
for j in range(256): 
for k in range(16):  
C[...] += ... 

Loop tiling

Loop fusion
# ReLU: 
for i' in range(512):  
for j' in range(256): 
D[...] = ... 
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MetaSchedule Probabilistic language
Tiling

# 1 Loop tiling for Dense 
θ0, θ1 ~ Sample-Tile(i, parts=2)  
θ2, θ3 ~ Sample-Tile(j, parts=2)  
i0, i1 = Split(i, [θ0, θ1]) 
j0, j1 = Split(j, [θ2, θ3])  
Reorder(i0, j0, i1, j1)  
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MetaSchedule Probabilistic language
# Dense:  
for i in range(512):  
for j in range(256): 
for k in range(16):  
C[...] += ... 

# ReLU: 
for i' in range(512):  
for j' in range(256): 
D[...] = ... 
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for i0, j0 in grid(θ0, θ2): 
for i1, j1 in grid(θ1, θ3):  
for k in range(16): 
C[…] += … 
 

Loop tiling

Loop fusion



MetaSchedule Probabilistic language
# Dense:  
for i in range(512):  
for j in range(256): 
for k in range(16):  
C[...] += ... 

# ReLU: 
for i' in range(512):  
for j' in range(256): 
D[...] = ... 
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for i0, j0 in grid(θ0, θ2): 
for i1, j1 in grid(θ1, θ3):  
for k in range(16): 
C[…] += … 
 

Loop tiling

Loop fusion



MetaSchedule Probabilistic language
Fusion

# 2 ReLU fusion 
θReLU ~ Sample-Compute-Location(ReLU)  
Compute-At(ReLU, θReLU) 
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MetaSchedule Probabilistic language
# Dense:  
for i in range(512):  
for j in range(256): 
for k in range(16):  
C[...] += ... 

# ReLU: 
for i' in range(512):  
for j' in range(256): 
D[...] = ... 
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# Fused Dense + ReLU 
# θReLU : Deep fusion under j1 

for i0, j0 in grid(θ0, θ2): 
for i1, j1 in grid(θ1, θ3):  
for k in range(16): 
C[…] += … 

for i', j' in grid(θ4, θ5): 
D[...] = ... 
 

Loop tiling

Loop fusion

θReLU is j1 



MetaSchedule Probabilistic language
# Dense:  
for i in range(512):  
for j in range(256): 
for k in range(16):  
C[...] += ... 

# ReLU: 
for i' in range(512):  
for j' in range(256): 
D[...] = ... 
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# Fused Dense + ReLU 
# θReLU : Shallow fusion under 
j0

for i0, j0 in grid(θ0, θ2): 
for i1, j1 in grid(θ1, θ3):  
for k in range(16): 
C[…] += … 

for i', j' in grid(θ4, θ5): 
D[...] = ... 
 

Loop tiling

Loop fusion

θReLU is j0 



Modularity

Initial Tensor Program e0

Search Space S(e0)

Optimal Program e*

Search Algorithm

Use Tensor-Core

Multi-Level Tiling

Auto-Inline

Cross-Thread Reduction

Random-Unroll

Transformation Module
domain knowledge of

TensorCore

• Previous program transformation modularised


• Modules are composable


• Pre-written modules


• By domain specialist
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Learning driven approach
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Multi-Level Tiling

…
Random-Unroll

Transformation Module

Initial tensor 
program e0

Learning-driven search

Traces Update
Proposal Sampling

Validator

sample
Optimized tensor 

program e*

!(#)
accept

reject

Cost Model %&(')
reject

Hardware &(')

propose

accept

measureupdate

• End-to-end search


• Execution traces (validation)



Performance
Optimising End-to-End Deep Learning Models 
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Performance
Composing modules
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Performance with different search spaces. BERT-Large Performance.



Thoughts & Critiques
Opinions are my own

• Why is probabilistic programming fit for search space construction


• After all we can just do random sampling, which does not require PP


• Guessing because it allows expressing of domain knowledge in a simple way


• But this is more of PP’s contribution


• Evaluation comparing with hardware specific modules


• Is this fair?


• Does not talk about searching time
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Conclusions

• DSL (Probabilistic programming) for tensor program optimisation


• Rich search space construction


• Composable modules for program optimisation


• Learning driven approach based on search space specification
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