
Shuntian Liu 9 Nov 2022

Tensor Program Optimization
with Probabilistic Programs
Junru Shao, Xiyou Zhou, Siyuan Feng, Bohan Hou, Ruihang Lai,
Hongyi Jin, Wuwei Lin, Masahiro Masuda, Cody Hao Yu, Tianqi Chen

1

Code examples adapted from original paper

Optimising Tensor Program

Initial Tensor Program e0 Search Space S(e0) Optimal Program e*Search Algorithm

for i in range(1024):
for j in range(1024):

for k in range(1024):

C[i, j] += A[i, k] * B[j, k]

for i0, j0 in grid(16, 8):
for i1, j1 in grid(8, 16):

for k0 in range(1024):
for i2, j2 in grid(8, 8):

C[...] += ...

for i0, j0 in grid(64, 8):
for i1, j1 in grid(4, 32):

for k0 in range(64):
for i2, j2 in grid(4, 4):

for k1 in range(16):

C[...] += ...

…

Key elements in automatic tensor program optimization

Examples

2

Probabilistic Programming (PP)

• Probabilistic programming is not about writing software that behaves
probabilistically.

• The key insight in PP is that statistical modelling can, when you do it enough,
start to feel a lot like programming

• a probabilistic programming language is an ordinary programming language
with rand and a great big pile of related tools that help you understand the
program's statistical behaviour

3

Related work

• Halide (2013)

• a language for fast, portable computation on images and tensors

• TVM (2018)

• Template guided search space

• Ansor (2020)

• Auto scheduler for subgraphs

• Difficult for expert to express domain knowledge in them

4

MetaSchedule, a domain-specific probabilistic
programming language abstraction to construct a rich

search space of tensor programs.

5

MetaSchedule, a domain-specific probabilistic
programming language abstraction to construct a rich

search space of tensor programs.

6

MetaSchedule Probabilistic language
Dense:

for i in range(512):
for j in range(256):
for k in range(16):
C[...] += ...

ReLU:
for i' in range(512):
for j' in range(256):
D[...] = …

7

MetaSchedule Probabilistic language
Dense:

for i in range(512):
for j in range(256):
for k in range(16):
C[...] += ...

ReLU:
for i' in range(512):
for j' in range(256):
D[...] = ...

8

MetaSchedule Probabilistic language
Dense:

for i in range(512):
for j in range(256):
for k in range(16):
C[...] += ...

Loop tiling

Loop fusion
ReLU:
for i' in range(512):
for j' in range(256):
D[...] = ...

9

MetaSchedule Probabilistic language
Dense:

for i in range(512):
for j in range(256):
for k in range(16):
C[...] += ...

Loop tiling

Loop fusion
ReLU:
for i' in range(512):
for j' in range(256):
D[...] = ...

10

MetaSchedule Probabilistic language
Tiling

1 Loop tiling for Dense
θ0, θ1 ~ Sample-Tile(i, parts=2)
θ2, θ3 ~ Sample-Tile(j, parts=2)
i0, i1 = Split(i, [θ0, θ1])
j0, j1 = Split(j, [θ2, θ3])
Reorder(i0, j0, i1, j1)

11

MetaSchedule Probabilistic language
Dense:
for i in range(512):
for j in range(256):
for k in range(16):
C[...] += ...

ReLU:
for i' in range(512):
for j' in range(256):
D[...] = ...

12

for i0, j0 in grid(θ0, θ2):
for i1, j1 in grid(θ1, θ3):
for k in range(16):
C[…] += …

Loop tiling

Loop fusion

MetaSchedule Probabilistic language
Dense:
for i in range(512):
for j in range(256):
for k in range(16):
C[...] += ...

ReLU:
for i' in range(512):
for j' in range(256):
D[...] = ...

13

for i0, j0 in grid(θ0, θ2):
for i1, j1 in grid(θ1, θ3):
for k in range(16):
C[…] += …

Loop tiling

Loop fusion

MetaSchedule Probabilistic language
Fusion

2 ReLU fusion
θReLU ~ Sample-Compute-Location(ReLU)
Compute-At(ReLU, θReLU)

14

MetaSchedule Probabilistic language
Dense:
for i in range(512):
for j in range(256):
for k in range(16):
C[...] += ...

ReLU:
for i' in range(512):
for j' in range(256):
D[...] = ...

15

Fused Dense + ReLU
θReLU : Deep fusion under j1

for i0, j0 in grid(θ0, θ2):
for i1, j1 in grid(θ1, θ3):
for k in range(16):
C[…] += …

for i', j' in grid(θ4, θ5):
D[...] = ...

Loop tiling

Loop fusion

θReLU is j1

MetaSchedule Probabilistic language
Dense:
for i in range(512):
for j in range(256):
for k in range(16):
C[...] += ...

ReLU:
for i' in range(512):
for j' in range(256):
D[...] = ...

16

Fused Dense + ReLU
θReLU : Shallow fusion under
j0

for i0, j0 in grid(θ0, θ2):
for i1, j1 in grid(θ1, θ3):
for k in range(16):
C[…] += …

for i', j' in grid(θ4, θ5):
D[...] = ...

Loop tiling

Loop fusion

θReLU is j0

Modularity

Initial Tensor Program e0

Search Space S(e0)

Optimal Program e*

Search Algorithm

Use Tensor-Core

Multi-Level Tiling

Auto-Inline

Cross-Thread Reduction

Random-Unroll

Transformation Module
domain knowledge of

TensorCore

• Previous program transformation modularised

• Modules are composable

• Pre-written modules

• By domain specialist

17

Learning driven approach

18

Multi-Level Tiling

…
Random-Unroll

Transformation Module

Initial tensor
program e0

Learning-driven search

Traces Update
Proposal Sampling

Validator

sample
Optimized tensor

program e*

!(#)
accept

reject

Cost Model %&(')
reject

Hardware &(')

propose

accept

measureupdate

• End-to-end search

• Execution traces (validation)

Performance
Optimising End-to-End Deep Learning Models

19

Performance
Composing modules

20

Performance with different search spaces. BERT-Large Performance.

Thoughts & Critiques
Opinions are my own

• Why is probabilistic programming fit for search space construction

• After all we can just do random sampling, which does not require PP

• Guessing because it allows expressing of domain knowledge in a simple way

• But this is more of PP’s contribution

• Evaluation comparing with hardware specific modules

• Is this fair?

• Does not talk about searching time

21

Conclusions

• DSL (Probabilistic programming) for tensor program optimisation

• Rich search space construction

• Composable modules for program optimisation

• Learning driven approach based on search space specification

22

References

• Shao, Junru et al. “Tensor Program Optimization with Probabilistic Programs.” ArXiv abs/2205.13603 (2022): n.
pag.

• Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu, Ameer Haj-Ali, Yida Wang, Jun Yang,
Danyang Zhuo, Koushik Sen, Joseph E. Gonzalez, and Ion Stoica. 2020. Ansor: generating high-performance
tensor programs for deep learning. In Proceedings of the 14th USENIX Conference on Operating Systems
Design and Implementation (OSDI'20). USENIX Association, USA, Article 49, 863–879.

• Ragan-Kelley, Jonathan & Barnes, Connelly & Adams, Andrew & Paris, Sylvain & Durand, Frédo &
Amarasinghe, Saman. (2013). Halide: A Language and Compiler for Optimizing Parallelism, Locality, and
Recomputation in Image Processing Pipelines. ACM SIGPLAN Notices. 48. 519-530.
10.1145/2499370.2462176.

• Yan, Eddie Q. et al. “USING AUTOTVM TO AUTOMATICALLY GENERATE DEEP LEARNING LIBRARIES FOR
MOBILE DEVICES.” (2019).

• Adrian Sampson, Probabilistic programming, url: http://adriansampson.net/doc/ppl.html, retrieved 26 Oct 2022

23

http://adriansampson.net/doc/ppl.html

