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Motivation

Problem

Modern systems require fine tuning a 
large number of hyperparameters

Existing Solutions

Bayesian optimization

Auto-Tuners

Problems

Configuration space too large

Time-consuming performance evaluation
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BOAT: BespOke Auto-Tuner
Structured 

Bayesian Optimization
BOAT Framework Case Studies

Distributed scheduling of 
neural network computation

Garbage collection

Source: Dalibard et al., 2017



Structured Bayesian Optimization

Bayesian Optimization Structured Bayesian Optimization

Source: Dalibard et al., 2017



Probabilistic Model: Garbage Collection

GC Configuration Space Dataflow of GC Model
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BOAT Framework

Source: Dalibard et al., 2017



Semi-Parametric Models in BOAT
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Probabilistic Models in BOAT

Semi-Parametric Model Directed Acyclic Graph Model
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Case Study: Garbage Collection

Configuration Space Model
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Objective Function

Source: Dalibard et al., 2017



Case Study: Garbage Collection

BOAT vs. Cassandra Default BOAT vs. Generic Auto-Tuners

Source: Dalibard et al., 2017



Case Study: Neural Networks

Configuration Space Model
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Case Study: Neural Networks

Source: Dalibard et al., 2017



Case Study: Neural Networks
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Summary
Structured 

Bayesian Optimization
BOAT Framework Case Studies

Distributed scheduling of 
neural network computation

Garbage Collection

Source: Dalibard et al., 2017



BOAT: 6 Years Later…

Framework Paper

Sources: GitHub, Google Scholar



Some Thoughts on the Paper

➢Extension of neural network case study beyond system perspective: 
Investigate whether BOAT could be used to increase model accuracy 
through hyperparameter selection (e.g. in image recognition tasks)

➢No discussion about potential limitations and problems of the approach
▪ What if the modularization of the overall system is not possible or the input-output 

relationships are unknown?
▪ Are there situations in which the added knowledge could have a negative impact on 

the performance of the system (thinking of reward shaping in RL)?
▪ …

➢Little technical depth on how BOAT maximizes the expected improvement 
and performs inference



Questions / Discussion
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