BOAT: Building Auto-Tuners with Structured Bayesian Optimization

Valentin Dalibard, Michael Schaarschmidt, Eiko Yoneki

Motivation

Problem

survivor ratio

max tenuring threshold

size

generation

young

best observed value

observed values

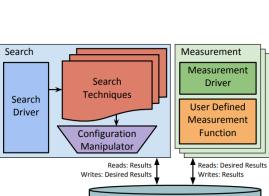
1.0

true function - GP mean confidence interval

0.8

GP estimate of the function 1.00 0.75 alue 0.50 0.25 0.00 0.2 0.4 hyperparameter **Bayesian optimization**

Modern systems require fine tuning a large number of hyperparameters

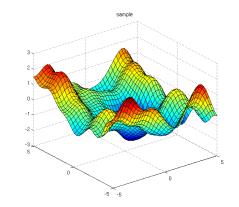


Auto-Tuners

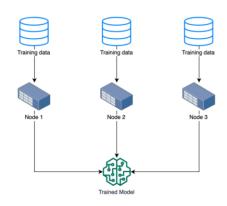
0.6

Results Database

Problems



Configuration space too large



Time-consuming performance evaluation

Source: Dalibard et al., 2017

BOAT: BespOke Auto-Tuner

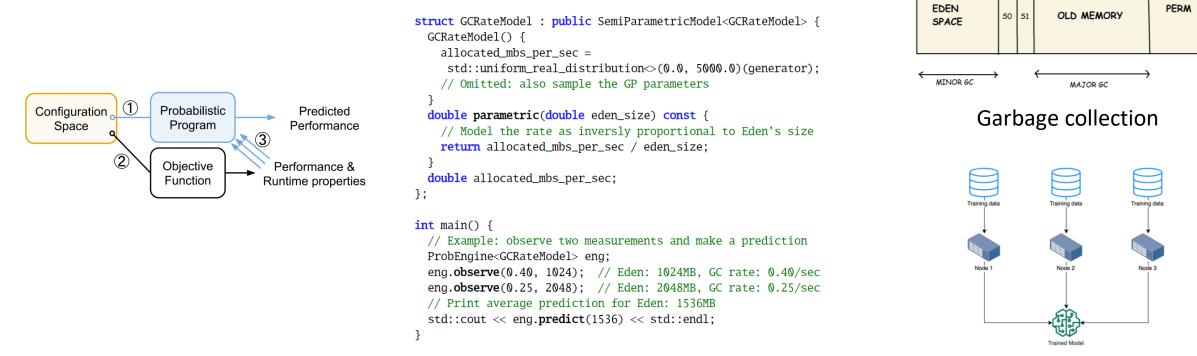
Structured Bayesian Optimization

BOAT Framework

Case Studies

OLD GENERATION

YOUNG GENERATION



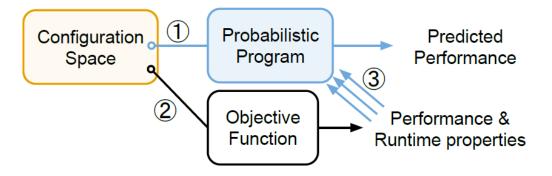
Distributed scheduling of neural network computation

Structured Bayesian Optimization

Bayesian Optimization

Structured Bayesian Optimization

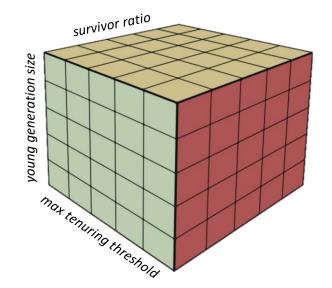
Input: Objective function f()Input: Acquisition function $\alpha()$ 1: Initialize the Gaussian process G2: for i = 1, 2, ... do 3: Sample point: $\mathbf{x}_t \leftarrow \arg \max_{\mathbf{x}} \alpha(G(\mathbf{x}))$ 4: Evaluate new point: $y_t \leftarrow f(\mathbf{x}_t)$ 5: Update the Gaussian process: $G \leftarrow G \mid (\mathbf{x}_t, y_t)$ 6: end for

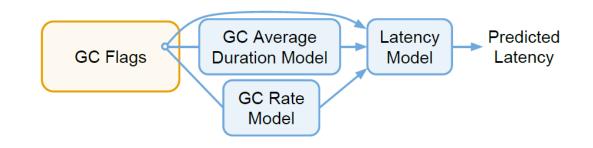


Probabilistic Model: Garbage Collection

GC Configuration Space

Dataflow of GC Model





BOAT: BespOke Auto-Tuner

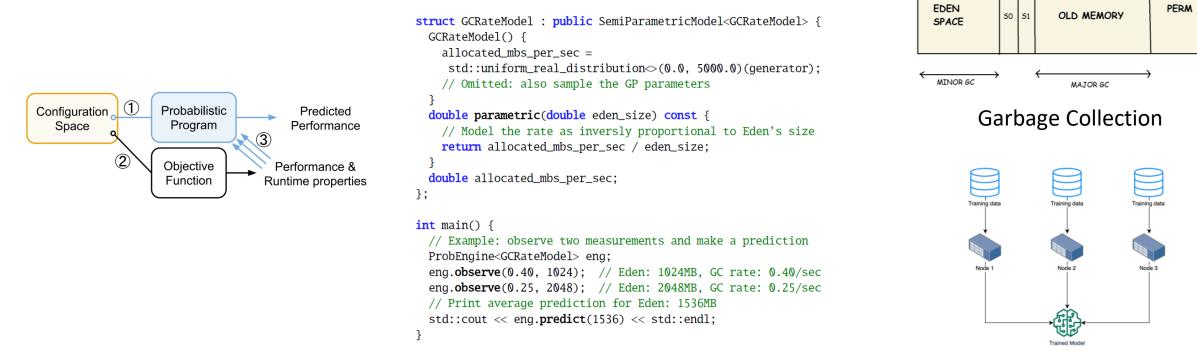
Structured Bayesian Optimization

BOAT Framework

Case Studies

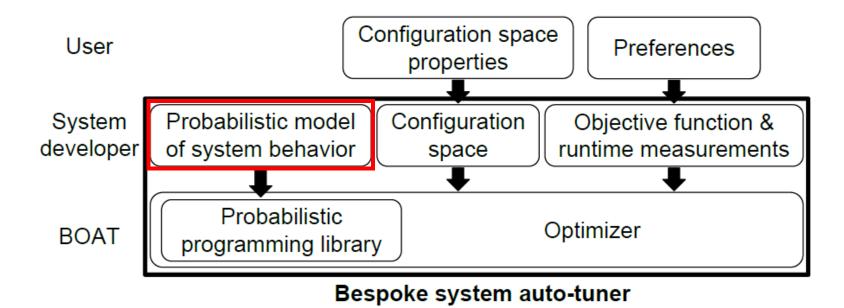
OLD GENERATION

YOUNG GENERATION

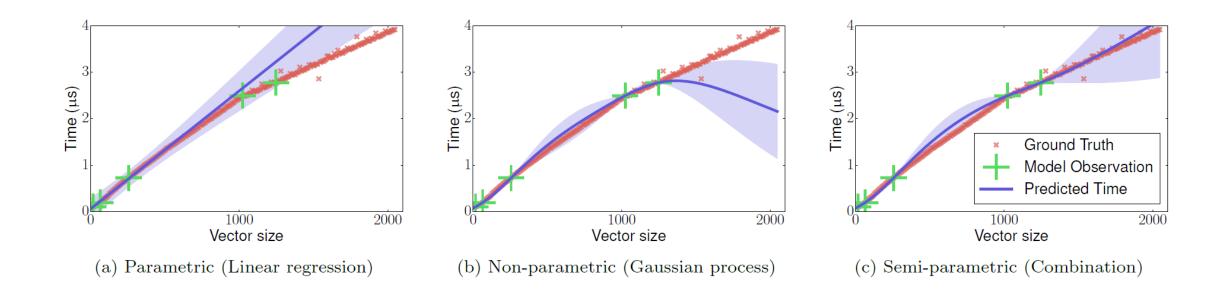


Distributed scheduling of neural network computation

BOAT Framework



Semi-Parametric Models in BOAT



Probabilistic Models in BOAT

Semi-Parametric Model

```
struct GCRateModel : public SemiParametricModel<GCRateModel> {
  GCRateModel() {
    allocated_mbs_per_sec =
     std::uniform_real_distribution<>(0.0, 5000.0)(generator);
    // Omitted: also sample the GP parameters
  double parametric(double eden_size) const {
   // Model the rate as inversly proportional to Eden's size
    return allocated_mbs_per_sec / eden_size;
  double allocated_mbs_per_sec;
}:
int main() {
 // Example: observe two measurements and make a prediction
  ProbEngine<GCRateModel> eng:
  eng.observe(0.40, 1024); // Eden: 1024MB, GC rate: 0.40/sec
  eng.observe(0.25, 2048); // Eden: 2048MB, GC rate: 0.25/sec
 // Print average prediction for Eden: 1536MB
  std::cout << eng.predict(1536) << std::endl;</pre>
3
```

Directed Acyclic Graph Model

```
struct CassandraModel : public DAGModel<CassandraModel> {
  void model(int ygs, int sr, int mtt){
   // Calculate the size of the heap regions
   double es = ygs * sr / (sr + 2.0);// Eden space's size
   double ss = yqs / (sr + 2.0); // Survivor space's size
   // Define the dataflow between semi-parametric models
   double rate = output("rate", rate_model, es);
    double duration = output("duration", duration_model,
                            es, ss, mtt);
   double latency = output("latency", latency_model,
                            rate, duration, es, ss, mtt);
  ProbEngine<GCRateModel> rate_model;
  ProbEngine<GCDurationModel> duration_model;
 ProbEngine<LatencyModel> latency_model;
};
int main() {
  CassandraModel model:
  // Observe a measurement
```

// Observe a measurement
std::unordered_map<std::string, double> m;
m["rate"] = 0.40; m["duration"] = 0.15; m["latency"] = 15.1;
int ygs = 5000, sr = 7, mtt = 2;
model.observe(m, ygs, sr, mtt);
/* Prints distributions (mean and stdev) of rate, duration
 and latency with a larger young generation size (ygs)*/
std::cout << model.predict(6000, sr, mtt) << std::endl;
// Print corresponding expected improvement of the latency
std::cout << model.expected_improvement(
 "latency", 15.1, 6000, sr, mtt) << std::endl;</pre>

3

BOAT: BespOke Auto-Tuner

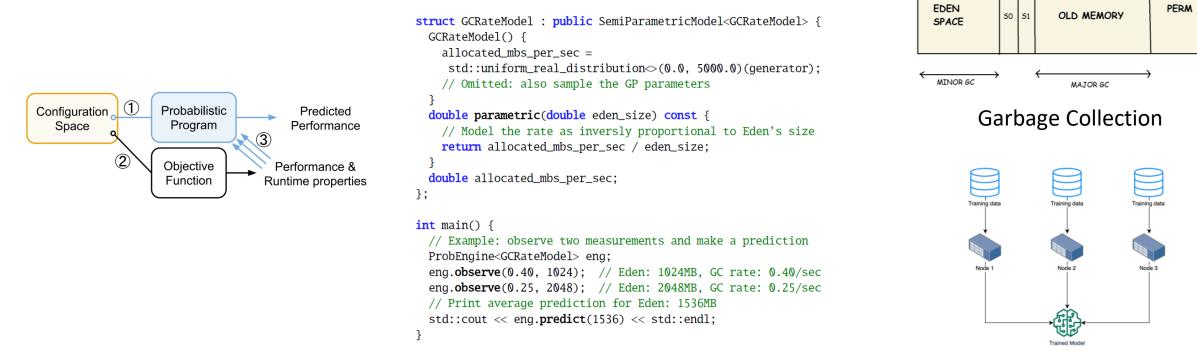
Structured Bayesian Optimization

BOAT Framework

Case Studies

OLD GENERATION

YOUNG GENERATION



Distributed scheduling of neural network computation

Case Study: Garbage Collection

Configuration Space

Objective Function

Model

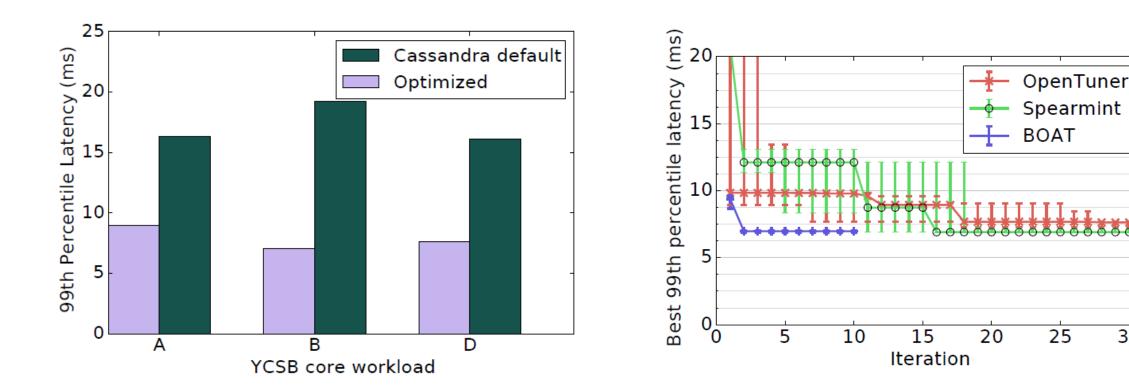
Case Study: Garbage Collection

BOAT vs. Cassandra Default

BOAT vs. Generic Auto-Tuners

25

30

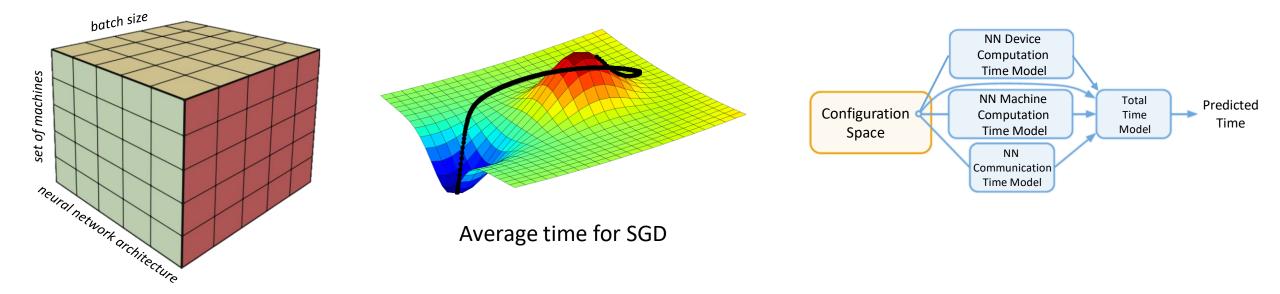


Case Study: Neural Networks

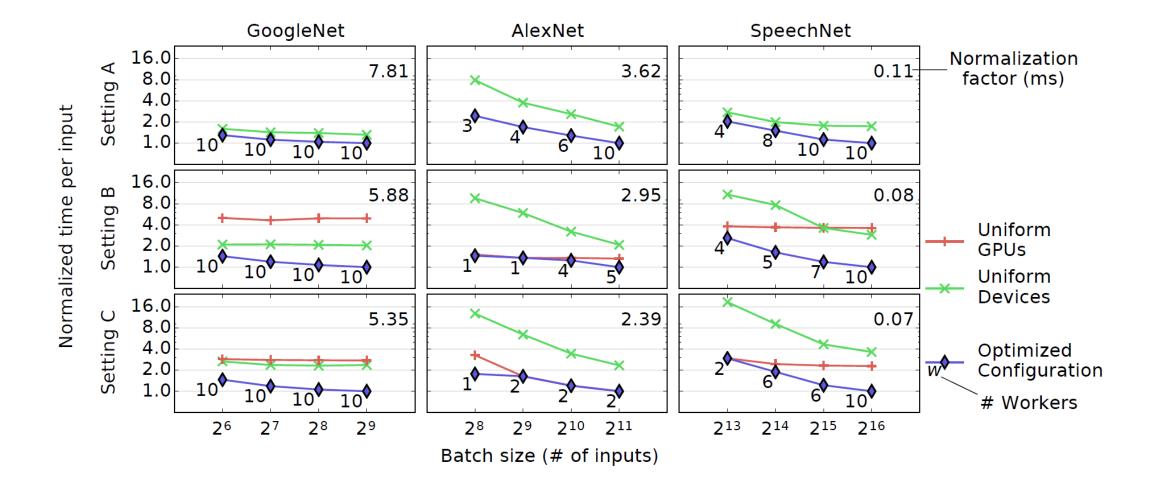
Configuration Space

Objective Function

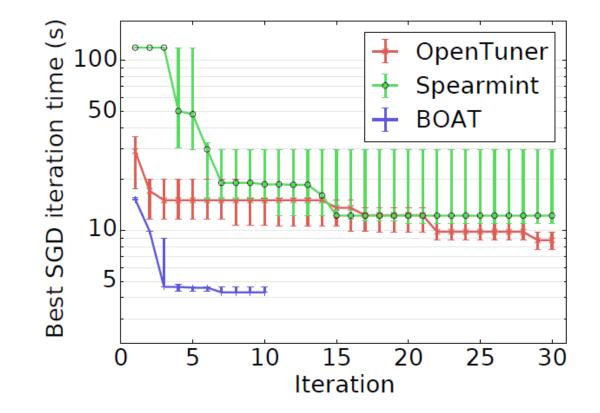
Model



Case Study: Neural Networks



Case Study: Neural Networks



Summary

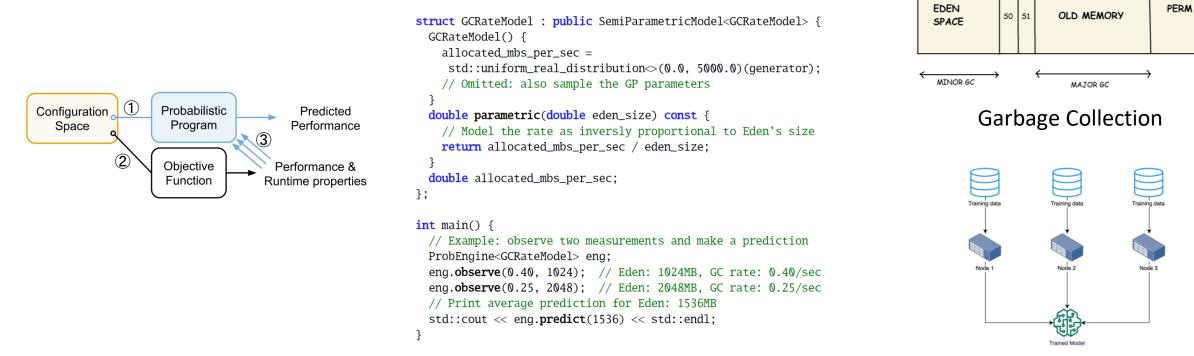
Structured Bayesian Optimization

BOAT Framework

Case Studies

OLD GENERATION

YOUNG GENERATION



Distributed scheduling of neural network computation

BOAT: 6 Years Later...

Framework

Paper

Go to file Code -	About
90b7583 on May 23, 2017 🕚 12 commits	<i>No description, website, or topics provided.</i>
6 years ago	か Apache-2.0 license
6 years ago	☆ 51 stars
6 years ago	 7 watching 13 forks
6 years ago	
6 years ago	Releases

BOAT: Building auto-tuners with structured Bayesian optimization

Authors	Valentin Dalibard, Michael Schaarschmidt, Eiko Yoneki	
Publication date	2017/4/3	
Book	Proceedings of the 26th International Conference on World Wide Web	
Pages	479-488	
Description	Due to their complexity, modern systems expose many configuration parameters which users must tune to maximize performance. Auto-tuning has emerged as an alternative in which a black-box optimizer iteratively evaluates configurations to find efficient ones. Unfortunately, for many systems, such as distributed systems, evaluating performance takes too long and the space of configurations is too large for the optimizer to converge within a reasonable time.	
Total citations	Cited by 88	

Scholar articles BOAT: Building auto-tuners with structured Bayesian optimization V Dalibard, M Schaarschmidt, E Yoneki - Proceedings of the 26th International Conference on ..., 2017 Cited by 88 Related articles All 10 versions

Some Thoughts on the Paper

Extension of neural network case study beyond system perspective: Investigate whether BOAT could be used to increase model accuracy through hyperparameter selection (e.g. in image recognition tasks)

>No discussion about potential limitations and problems of the approach

- What if the modularization of the overall system is not possible or the input-output relationships are unknown?
- Are there situations in which the added knowledge could have a negative impact on the performance of the system (thinking of reward shaping in RL)?
- ...
- Little technical depth on how BOAT maximizes the expected improvement and performs inference

Questions / Discussion

References

- ➢V. Dalibard, M. Schaarschmidt, and E. Yoneki: <u>BOAT: Building Auto-</u> <u>Tuners with Structured Bayesian Optimization</u>, WWW, 2017.
- Valentin Dalibard. <u>A framework to build bespoke auto-tuners with</u> <u>structured Bayesian optimisation</u>. PhD thesis, University of Cambridge (UCAM-CL-TR-900), January 2017.

Image Sources

- V. Dalibard, M. Schaarschmidt, and E. Yoneki: <u>BOAT: Building Auto-Tuners with Structured Bayesian Optimization</u>, WWW, 2017.
- https://miro.medium.com/max/1072/1*tkpDTzQKwekXbSd0L_e9Aw.png
- https://cds.cern.ch/record/2702355/files/step1.png
- Jason Ansel et al. <u>Opentuner: an extensible framework for program autotuning</u>. In Proceedings of the 23rd international conference on Parallel architectures and compilation, pages 303-316. ACM, 2014.
- https://thegradient.pub/content/images/size/w1600/2019/11/kernel_cookbook-2.png
- <u>https://www.studytrails.com/2021/02/10/distributed-machine-learning-2-architecture/</u>
- https://iq.opengenus.org/content/images/2018/05/jvm_memory.png
- https://upload.wikimedia.org/wikipedia/commons/thumb/5/5e/Cassandra_logo.svg/1200px-Cassandra_logo.svg.png
- https://ozzieliu.com/assets/img/gradientdescent.png
- https://github.com/VDalibard/BOAT
- <u>https://scholar.google.com/citations?view_op=view_citation&hl=de&user=39qZ_EsAAAAJ&citation_for_view=39qZ_EsAAAAJ:I7t_Zn2s7bgC</u>
- https://images.squarespace-cdn.com/content/v1/596f25c2725e25fb89b3a6f4/1544176431098-WT0ELR52Q0X1IQC89YRH/discussion+cc3.0.png?format=1500w