Bayesian Generational
Population-Based
Training

Xingchen Wan, Cong Lu, Jack Parker-Holder, Philip J.
Ball, Vu Nguyen, Binxin Ru and Michael A. Osborne

Presented by
Ridwan Muheeb
rm2084

Historical Context

* [t has been proven that success of a neural network depends
upon the joint tuning of the model structure, its data and the
details of how the model is optimized.

« Each of these components of a learning framework is
controlled by a number of parameters i.e. hyperparameters
(HP) which influence the learning process and must be
properly tuned to fully unlock the network performance.

* There are two approaches for doing this:
» Parallel Search
* Sequential Search

Historical Context

1.Sequential Search:
* Run few optimizations
in parallel but many

(a) Sequential Optimisation

Performance

times sequentially with 0-0.

outputs of previous | |

epochs . gu1d1ng lgter Source: Jaderberg, et al, 2017

epochs in order to find

the best case. Start a simple rate and decrease by a fixed factor
R : in each epoch e.g. start 0.005 decrease by factor

E.g. hand tuning or

B an timization — > of 10 for each 100 epochs

ayeslan optimization. 0.005 — 0.0005 — 0.00005 —>0.000005

* Works best but time
consuming due long
optimization processes.

Historical Context

(b) Parallel Random/Grid Search

2. Parallel Search:

* Run multiple
optimizations in parallel
in bid to find one best
output.

« E.g. grid or random
search.

 Time and computationally
expensive.

Source: Jaderberg, et al, 2017

Population Based Training

Paradigm

3. Population Based Training:

parallel + sequential optimization
methods.

Start like parallel search, randomly
sampling HP and weight initializations.
Underperforming population model
replaces self with a better performing
model and explore new HPs by modifying
the better model’s HPs before training is
continued.

Allow it to focus on weight space that has
best potential to produce good results.
Proven to be effective in Generative
Adversarial Networks (GANs) and Machine
Learning Translation

(c) Population Based Training

Performance
—

yperparameters O

»exploit

!

Source: Jaderberg, et al, 2017

Motivation

* Fragility of reinforcement learning to key hyperparameters
and choice of network architecture.

* Expensive RL parameters tuning.

* Possibility of obtaining algorithmic optimality at different
training points due to changing data distribution

» Evolving training and data and increased agent complexity.

* Existing Population Based Training styles are not scalable to
higher dimensional data.

* Solution -> Bayesian Generational Population Based
Training

Key Ideas

* Capable of tweaking a large proportion of agents
configurations.

* On-the-fly and automatic finetuning of HPs and
architectures during training epochs.

* Achieve these using two techniques:

* Model based HPs architecture exploration steps built on
local Bayesian optimization

* Generational learning which combines PBT and network
distillation.

* Experimented for Proximal Policy Optimization (PPO)
on Brax, a less computing intensive differentiable
physics engine simulation environments.

Key Ideas — Algorithmic representation

marked in magenta (§3.2)

: Input: pop size B, fy.,4,, max steps T, g (% agents re-

placed per iteration)

: Initialize B agents with weights {ﬂéj"'}f’_ ;» random hy-

perparameters {zﬁj}}f‘_l and architectures {y,;""] i1
T (in parallel for all B agents) do

Train models & record data for all agents

if t mod t;g, = 0 then
Replace the weights & architectures of the bottom
g% agents with those of the top g% agents.
Update the surrogate with new observations &
returns and adjust/restart the trust regions.

Check whether Lo slart a new generalion (See §3.2).

if start a new generation then
Clear the cr training data.
reate B agents with archs. from BO/random.
Distill from a top-g% performing agent of the
ng generation Lo new agents.
clse
Select new hyperparameters z for the agents
whose weights have been just replaced with

randomly sampled configs (if D = @) OR using
the suggestions from the Bo agent described

conditioned on y (otherwise).

Source: Wan, et al (2021)

—

approach to select

* Consists of three parts.

« Use a Bayesian optimization

new HP

configurations z for agents.

 Extend the search

space to

accommodate architecture search
to allowing agents to choose their

own networks.

« Use on-policy distillation to

transfer between
architectures.

different

Key Ideas

Within a generation

* Consist of three stages.

Suggested by BO * Initialization: Random HP and
T .z weights of different
architectures are used for
training.

« Exploitation: Underperforming

agents copies weight and
architectures of the best-
performing agent.

- Exploration: HPs suggestions
by time-varying, high-
dimensional BO agent.

Source: Wan, et al (2021)

Key Ideas

Across generations
* Consist of two stages.

 Initialization: Generate |
o random architecture.

Top-q% agent(s) from

last peneration

(tencher(s)) - T¥ X Subsequent generations: BO
7 - agent performance of the
previously generated is used to

On-policy

Distillation |+ Zr suggest new architectures.

i | ol BES T * Transfer Knowledge: (On-
(random/B0) A policy distillation): Best

Architocture

-O agents from previous
| ’ generation guides subsequent

O11€S.

Source: Wan, et al (2021)

Performance - Comparative Evaluation

Source: Wan, et al (2021)

* Experiments conducted on 7 Brax environments.

* Outperforms Random Search, Population Based
Training (Jaderberg et al, 2017), PB2 (Parker-Holder et
al, 2020) in all the 7 environments

Performance on Discovered Hyperparameter and

Architecture Schedules
Source: Wan, et al (2021)

m-net width m-net aepth V-net width V-net depth Discounting factor Entropy cost

Ik e

~ Learning rate Batch size Mo. update epochs Clip parameter Reward scale Unroll length

i

* Increasing HP size over time during training to model complex behaviors.

« Start with few hyperparameter sizes and increase accordingly to model complex behaviors

. B% PZiB’{ achieved declining learning rate and batch size increment over time without any pre-defined
schedule.

* Result consistent with common practices in deep and reinforcement learning.

Pros

* On-the-fly hyperparameters finetuning to achieve optimal
results with less computing resources.

* Results consistent with trends in deep and reinforcement
learning domain (declining learning rate and increasing
batch size).

* Outperforms existing architectures of PBT based
solutions in the simulation environments.

Limitations

* Although the researchers was able to automate
Reinforcement Learning hyperparameters using BG-PBT,
they recognized need to automate PBT parameters
themselves e.g. no. of iterations/epochs needed to achieve
optimal result.

 Environmental complexity, network architecture
sensitivity and poor selection of architectures can affect
the system performance.

Suggestion for Future Research

* Applicability of BG-PBT to other domains outside of
reinforcement learning such as GANs, Machine Learning
Translation/NLP.

Bibliography

« Jaderberg, Max, et al. "Population based training of
neural networks." arXiwv preprint arXiv:1711.09846 (2017).

* Wan, Xingchen, et al. "Bayesian Generational Population-
Based Training." First Conference on Automated Machine
Learning (Main Track). 2022.

