
Bayesian Generational
Population-Based

Training

Presented by

Ridwan Muheeb

rm2084

Xingchen Wan, Cong Lu, Jack Parker-Holder, Philip J.

Ball, Vu Nguyen, Binxin Ru and Michael A. Osborne

Historical Context

• It has been proven that success of a neural network depends
upon the joint tuning of the model structure, its data and the
details of how the model is optimized.

• Each of these components of a learning framework is
controlled by a number of parameters i.e. hyperparameters
(HP) which influence the learning process and must be
properly tuned to fully unlock the network performance.

• There are two approaches for doing this:

• Parallel Search

• Sequential Search

Historical Context

Source: Jaderberg, et al, 2017

1.Sequential Search:

• Run few optimizations

in parallel but many

times sequentially with

outputs of previous

epochs guiding later

epochs in order to find

the best case.

• E.g. hand tuning or

Bayesian optimization.

• Works best but time

consuming due long

optimization processes.

Start a simple rate and decrease by a fixed factor

in each epoch e.g. start 0.005 decrease by factor

of 10 for each 100 epochs

0.005 0.0005 0.00005 0.000005

Historical Context

Source: Jaderberg, et al, 2017

2. Parallel Search:

• Run multiple

optimizations in parallel

in bid to find one best

output.

• E.g. grid or random

search.

• Time and computationally

expensive.

Population Based Training
Paradigm

Source: Jaderberg, et al, 2017

3. Population Based Training:

• parallel + sequential optimization

methods.

• Start like parallel search, randomly

sampling HP and weight initializations.

• Underperforming population model

replaces self with a better performing

model and explore new HPs by modifying

the better model’s HPs before training is

continued.

• Allow it to focus on weight space that has

best potential to produce good results.

• Proven to be effective in Generative

Adversarial Networks (GANs) and Machine

Learning Translation

Motivation

• Fragility of reinforcement learning to key hyperparameters
and choice of network architecture.

• Expensive RL parameters tuning.

• Possibility of obtaining algorithmic optimality at different
training points due to changing data distribution

• Evolving training and data and increased agent complexity.

• Existing Population Based Training styles are not scalable to
higher dimensional data.

• Solution -> Bayesian Generational Population Based
Training

Key Ideas

• Capable of tweaking a large proportion of agents
configurations.

• On-the-fly and automatic finetuning of HPs and
architectures during training epochs.

• Achieve these using two techniques:
• Model based HPs architecture exploration steps built on
local Bayesian optimization

• Generational learning which combines PBT and network
distillation.

• Experimented for Proximal Policy Optimization (PPO)
on Brax, a less computing intensive differentiable
physics engine simulation environments.

Key Ideas – Algorithmic representation

• Consists of three parts.

• Use a Bayesian optimization
approach to select new HP
configurations z for agents.

Source: Wan, et al (2021)

• Extend the search space to
accommodate architecture search
to allowing agents to choose their
own networks.

• Use on-policy distillation to
transfer between different
architectures.

Key Ideas

• Consist of three stages.

• Initialization: Random HP and
weights of different
architectures are used for
training.

• Exploitation: Underperforming
agents copies weight and
architectures of the best-
performing agent.

• Exploration: HPs suggestions
by time-varying, high-
dimensional BO agent.

Source: Wan, et al (2021)

Within a generation

Key Ideas

• Consist of two stages.

• Initialization: Generate 1
random architecture.

• Subsequent generations: BO
agent performance of the
previously generated is used to
suggest new architectures.

• Transfer Knowledge: (On-
policy distillation): Best
agents from previous
generation guides subsequent
ones.

Source: Wan, et al (2021)

Across generations

Performance – Comparative Evaluation
Source: Wan, et al (2021)

• Experiments conducted on 7 Brax environments.

• Outperforms Random Search, Population Based
Training (Jaderberg et al, 2017), PB2 (Parker-Holder et
al, 2020) in all the 7 environments

Performance on Discovered Hyperparameter and
Architecture Schedules

Source: Wan, et al (2021)

• Increasing HP size over time during training to model complex behaviors.

• Start with few hyperparameter sizes and increase accordingly to model complex behaviors

• BG-PBT achieved declining learning rate and batch size increment over time without any pre-defined
schedule.

• Result consistent with common practices in deep and reinforcement learning.

Pros

• On-the-fly hyperparameters finetuning to achieve optimal
results with less computing resources.

• Results consistent with trends in deep and reinforcement
learning domain (declining learning rate and increasing
batch size).

• Outperforms existing architectures of PBT based
solutions in the simulation environments.

Limitations

• Although the researchers was able to automate
Reinforcement Learning hyperparameters using BG-PBT,
they recognized need to automate PBT parameters
themselves e.g. no. of iterations/epochs needed to achieve
optimal result.

• Environmental complexity, network architecture
sensitivity and poor selection of architectures can affect
the system performance.

Suggestion for Future Research

• Applicability of BG-PBT to other domains outside of
reinforcement learning such as GANs, Machine Learning
Translation/NLP.

Bibliography

• Jaderberg, Max, et al. "Population based training of
neural networks." arXiv preprint arXiv:1711.09846 (2017).

• Wan, Xingchen, et al. "Bayesian Generational Population-
Based Training." First Conference on Automated Machine
Learning (Main Track). 2022.

