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Background

1. Why Graph?
Machine Learning and Data Mining (MLDM) problems represented as
graphs ---> Graph structured computation is important

2. Current distributed graph computation systems
* Pregel
» GraphlLab

3. Problems: Existing distributed graph computation systems
perform poorly on Natural Graphs.



Challenges of Natural Graphs

Many Graphs have skewed degree distribution: a small fraction
of the vertices are adjacent to a large fraction of the edges

Power-Law Degree Distribution

More than 108 vertices
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Source: Joseph Gonzalez. (2012).
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How do we program
graph computation?

“Think like a Vertex.”

-Malewicz et al. [SIGMOD’10]



The Graph-Parallel Abstraction

1. A user-defined Vertex-Program runs on each vertex

2. Graph constrains interaction along edges
- Using messages (e.g. Pregel [PODC’09, SIGMOD’10])
- Through shared state (e.g., GraphLab [UAI'10, VLDB’12])

3. Parallelism: run multiple vertex programs simultaneously

Source: Joseph Gonzalez. (2012).




PageRank Algorithm
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The Pregel Abstraction

Vertex-Programs interact by sending messages.

Pregel PageRank(i, messages) :

(// Receive all the messages

total = ©

foreach( msg in messages) :
total = total + msg

N

1%

// Update the rank of this vertex
{ R[i] = 0.15 + total |

( // Send new messages to neighbors
foreach(j in out_neighbors[i]) :
Send msg(R[i] * w;;) to vertex jJ

Malewicz et al. [PODC’09, SIGMOD’10]



The GraphlLab Abstraction

Vertex-Programs directly read the neighbors state

GraphLab_PageRank (1)
(// Compute sum over neighbors
total = @
foreach( j in in_neighbors(i)):
‘ total = total + R[j] * wy;

7 Update the PageRank
L R[i] = 0.15 + total

( // Trigger neighbors to run again
if R[i] not converged then

‘ foreach( j in out_neighbors(i)):

L signal vertex-program on j

Low et al. [UAI’10, VLDB'12]



Problem: Challenges of High-Degree Vertices

GraphLab and Pregel on Natural Graphs:
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Source: Joseph Gonzalez. (2012). requires heavy locking (GraphLab) prone to stragglers (Pregel)
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Problem: Random Partitioning

* Both GraphlLab and Pregel resort to random
(hashed) partitioning on natural graphs
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10 Machines 2 90% of edges cut
100 Machines = 99% of edges cut!

Source: Joseph Gonzalez. (2012).
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In Summary

GraphlLab and Pregel are not well
suited for natural graphs

* Challenges of high-degree vertices
* Low quality partitioning



PowerGraph

* GAS Decomposition: distribute vertex-programs
— Move computation to data
— Parallelize high-degree vertices

* Vertex Partitioning:
— Effectively distribute large power-law graphs



A Common Pattern for Vertex-Programs

GraphLab_PageRank(1i)
~// Compute sum over neighbors

total = © Gather Information
foreach( j in in_neighbors(i)): .
total = total + R3] * wi, About Neighborhood .

K // Update the PageRank
R[i] = @.1 + total Update Vertex

// Trigger neighbors to run again
if R[i] not converged then Signal Neighbors &

foreach( j in out_neighbors(i)) Modify Edge Data
signal vertex-program on j

Source: Joseph Gonzalez. (2012).




Gather (Reduce)

Accumulate information
about neighborhood

User Defined:
» Gather(@—@) 2> 2
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Parallel
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GAS Decomposition

Apply
Apply the accumulated
value to center vertex

User Defined:
» Apply(@), 2) > (B

.@}%
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Scatter
Update adjacent edges
and vertices.

User Defined:
> Scatter(@~@) > —

Update Edge Data &
Activate Neighbor353

J

Source: Joseph Gonzalez. (2012).




PageRank in PowerGraph

Rl =015+ Y  wjR[j]
jENbrs(7)

PowerGraph_PageRank(i)

Gather(j = i) :return w;* R[j]
sum(a, b) : returna + b;

Apply(d,2) : R[1]] =0.15 + 2

Scatter(i—=2j):
if R[i] changed then trigger j to be recomputed

Source: Joseph Gonzalez. (2012).




Edge Cut vs Vertex Cut

Two methods for partitioning the graph in a distributed
environment:
® Edge Cut (Used by Pregel and GraphlLab abstractions)
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(a) Edge-Cut (b) Vertex-Cut

Figure 4: (a) An edge-cut and (b) vertex-cut of a graph into
three parts. Shaded vertices are ghosts and mirrors respectively.



New Approach to Partitioning

« Rather than cut edges:

- Must
— st
* synchronize
many edges

 We cut vertices

® ] * Must
$ '._’: ; ‘ é :‘_.‘ synchronize a
single vertex

CPU 1 CPU 2

Source : Joseph Gonzalez. (2012).




New Approach to Partitioning

New Theorem:
For any edge-cut we can directly
construct a vertex-cut which requires
strictly less communication and storage.




Constructing Vertex-Cuts

* Evenly assign edges to machines
— Minimize machines spanned by each vertex

* Assign each edge as it is loaded
— Touch each edge only once

* Propose three distributed approaches:
— Random Edge Placement
— Coordinated Greedy Edge Placement
— Oblivious Greedy Edge Placement



Random Edge-Placement

- Randomly assign edges to machines

Machine 1 Machine 2 Machine 3
*—° O—@ \)

Balanced Vertex-Cut

o Spans 3 Machines
@ Spans 2 Machines

|
. NOt CUt . Source: Joseph Gonzalez. (2012).




Analysis Random Edge-Placement

e Expected number of machines spanned by a
vertex:
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Source: Joseph Gonzalez. (2012).




Random Vertex-Cuts vs. Edge-Cuts

* Expected improvement from vertex-cuts:
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Greedy Vertex-Cuts

* Place edges on machines which already have
the vertices in that edge.

Machinel Machine 2

Source: Joseph Gonzalez. (2012).




Greedy Vertex-Cuts

* De-randomization = greedily minimizes the
expected number of machines spanned

* Coordinated Edge Placement
— Requires coordination to place each edge
— Slower: higher quality cuts
* Oblivious Edge Placement
— Approx. greedy objective without coordination
— Faster: lower quality cuts



Partitioning Performance

Twitter Graph: 41M vertices, 1.4B edges
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Oblivious balances cost and partitioning time.

Source: Joseph Gonzalez. (2012).




Greedy Vertex-Cuts Improve Performance
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Other Features (See Paper)

* Supports three execution modes:
— Synchronous: Bulk-Synchronous GAS Phases
— Asynchronous: Interleave GAS Phases

— Asynchronous + Serializable: Neighboring vertices
do not run simultaneously

* Delta Caching

— Accelerate gather phase by caching partial sums
for each vertex



System Design

MPI/TCP-IP PThreads

EC2 HPC Nodes

Source: Joseph Gonzalez. (2012).

* Implemented as C++ API
* Uses HDFS for Graph Input and Output

* Fault-tolerance is achieved by check-pointing
— Snapshot time < 5 seconds for twitter network



Implemented Many Algorithms

* Collaborative Filtering * Graph Analytics

— Alternating Least Squares — PageRank
— Stochastic Gradient — Triangle Counting
Descent — Shortest Path

— SVD — Graph Coloring

— Non-negative MF — K-core Decomposition
e Statistical Inference e Computer Vision

— Loopy Belief Propagation — Image stitching

— Max-Product Linear

* Language Modeling
— LDA

Programs
— Gibbs Sampling



Comparison with GraphLab & Pregel

Total Network (GB)

e PageRank on Synthetic Power-Law Graphs:

Communication

(WY
o

8 b4
\Pregel (Piccolo)

6
Graphlab
4 '

Power-Law Constant a

<«— High-degree vertices

PowerGraph is robust to high-degree vertices.

Runtime

30;\

\Pregel (Piccolo)

2 2.2

Power-Law Constant a

<— High-degree vertices

Source: Joseph Gonzalez. (2012).




PageRank on the Twitter Follower Graph

Natural Graph with 40M Users, 1.4 Billion Links
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Source: Joseph Gonzalez. (2012).




PowerGraph is Scalable

Yahoo Altavista Web Graph (2002):
One of the largest publicly available web graphs

1.4 Billion Webpages, 6.6 Billion Links

7 Seconds per lter.

1B links processed per second
30 lines of user code



Summary

* Problem: Computation on Natural Graphs is
challenging

— High-degree vertices
— Low-quality edge-cuts

e Solution: PowerGraph System

— GAS Decomposition: split vertex programs
— Vertex-partitioning: distribute natural graphs

* PowerGraph theoretically and experimentally
outperforms existing graph-parallel systems.



Criticism - pros/cons

« PowerGraph, uses intelligent partitioning of vertices across
servers. While this pre-processing reduces per iteration runtime,
it is an expensive step by itself. [1]

* High Memory: store in, edges, mirror values

» Qut-of-core storage: Support graphs that don’t fit in memory
(GraphChi)

* Maintenance of vertex replicas, communication-bound apply
phase in the GAS abstraction [2]



PowerGraph

source: link


https://slideplayer.com/slide/4768409/
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