PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs

J. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin OSDI 2012

Background

1. Why Graph?

Machine Learning and Data Mining (MLDM) problems represented as graphs ---> Graph structured computation is important

- 2. Current distributed graph computation systems
 - Pregel
 - GraphLab
- **3. Problems**: Existing distributed graph computation systems perform poorly on Natural Graphs.

Challenges of Natural Graphs

Many Graphs have skewed degree distribution: a small fraction of the vertices are adjacent to a large fraction of the edges

How do we *program* graph computation?

"Think like a Vertex." -Malewicz et al. [SIGMOD'10]

The Graph-Parallel Abstraction

- 1. A user-defined Vertex-Program runs on each vertex
- 2. Graph constrains interaction along edges
 - Using messages (e.g. Pregel [PODC'09, SIGMOD'10])
 - Through shared state (e.g., GraphLab [UAI'10, VLDB'12])
- 3. Parallelism: run multiple vertex programs simultaneously

- Update ranks in parallel
- Iterate until convergence

The Pregel Abstraction

Vertex-Programs interact by sending messages.

```
Pregel_PageRank(i, messages) :
  // Receive all the messages
  total = 0
  foreach( msg in messages) :
    total = total + msg
  // Update the rank of this vertex
  R[i] = 0.15 + total
  // Send new messages to neighbors
  foreach(j in out_neighbors[i]) :
    Send msg(R[i] * w<sub>ii</sub>) to vertex j
```


The GraphLab Abstraction

Vertex-Programs directly read the neighbors state

```
GraphLab_PageRank(i)
// Compute sum over neighbors
total = 0
foreach( j in in_neighbors(i)):
   total = total + R[j] * W<sub>ji</sub>
```

```
// Update the PageRank
R[i] = 0.15 + total
```

```
// Trigger neighbors to run again
if R[i] not converged then
foreach( j in out_neighbors(i)):
    signal vertex-program on j
```


Problem: Challenges of High-Degree Vertices

GraphLab and Pregel on Natural Graphs:

- 1. Work Imbalance
- 2. Partitioning
- 3. Communication
- 4. Storage
- 5. Computation

Sequentially process edges

Sends many messages (Pregel) Touches a large fraction of graph (GraphLab)

Edge meta-data too large for single machine

Asynchronous Execution requires heavy locking (GraphLab)

Synchronous Execution prone to stragglers (Pregel)

Source: Joseph Gonzalez. (2012).

Problem: Random Partitioning

 Both GraphLab and Pregel resort to random (hashed) partitioning on natural graphs

In Summary

GraphLab and Pregel are not well suited for natural graphs

- Challenges of high-degree vertices
- Low quality partitioning

- GAS Decomposition: distribute vertex-programs
 - Move computation to data
 - Parallelize high-degree vertices

- Vertex Partitioning:
 - Effectively distribute large power-law graphs

A Common Pattern for Vertex-Programs

<pre>GraphLab_PageRank(i) // Compute sum over neighbors total = 0 foreach(j in in_neighbors(i)): total = total + R[j] * W_{ji}</pre>	Gather Information About Neighborhood
<pre>// Update the PageRank R[i] = 0.1 + total</pre>	Update Vertex
<pre>// Trigger neighbors to run again if R[i] not converged then foreach(j in out_neighbors(i)) signal vertex-program on j</pre>	Signal Neighbors & Modify Edge Data

GAS Decomposition

Gather (Reduce) Apply **S**catter Apply the accumulated Update adjacent edges Accumulate information about neighborhood value to center vertex and vertices. User Defined: **User Defined:** User Defined: $\blacktriangleright \text{Scatter}(\bigcirc - \bigcirc) \rightarrow - -$ ▶ Gather($\bigcirc \rightarrow \Sigma$ ► Apply(\bigcirc , Σ) \rightarrow \bigcirc $\blacktriangleright \Sigma_1 \oplus \Sigma_2 \rightarrow \Sigma_3$ Update Edge Data & Parallel $I + I + ... + I \rightarrow \sum_{i}$ **Activate Neighbors** Sum 33

PageRank in PowerGraph

$$R[i] = 0.15 + \sum_{j \in Nbrs(i)} w_{ji}R[j]$$
PowerGraph_PageRank(i)
Gather(j \rightarrow i): return $w_{ji} * R[j]$
sum(a, b): return a + b;

Apply(i, Σ): R[i] = 0.15 + Σ

```
Scatter(i \rightarrow j):
if R[i] changed then trigger j to be recomputed
```

Edge Cut vs Vertex Cut

Two methods for partitioning the graph in a distributed environment:

• Edge Cut (Used by Pregel and GraphLab abstractions)

Figure 4: (a) An edge-cut and (b) vertex-cut of a graph into three parts. Shaded vertices are ghosts and mirrors respectively.

New Approach to Partitioning

• Rather than cut edges:

Must synchronize **many** edges

• We cut vertices

Must synchronize a **single** vertex

Source: Joseph Gonzalez. (2012).

New Approach to Partitioning

New Theorem: For any edge-cut we can directly construct a vertex-cut which requires strictly less communication and storage.

Constructing Vertex-Cuts

- Evenly assign edges to machines
 - Minimize machines spanned by each vertex
- Assign each edge as it is loaded
 - Touch each edge only once
- Propose three **distributed** approaches:
 - **Random** Edge Placement
 - Coordinated Greedy Edge Placement
 - Oblivious Greedy Edge Placement

Random Edge-Placement

• Randomly assign edges to machines

Analysis Random Edge-Placement

Expected number of machines spanned by a vertex:

Twitter Follower Graph 41 Million Vertices 1.4 Billion Edges

Accurately Estimate

Memory and Comm.

Overhead

Source: Joseph Gonzalez. (2012)

Random Vertex-Cuts vs. Edge-Cuts

• Expected improvement from vertex-cuts:

Greedy Vertex-Cuts

 Place edges on machines which already have the vertices in that edge.

Greedy Vertex-Cuts

- De-randomization → greedily minimizes the expected number of machines spanned
- Coordinated Edge Placement
 - Requires coordination to place each edge
 - Slower: higher quality cuts
- Oblivious Edge Placement
 - Approx. greedy objective without coordination
 - Faster: lower quality cuts

Partitioning Performance

Twitter Graph: 41M vertices, 1.4B edges

Oblivious balances cost and partitioning time.

Greedy Vertex-Cuts Improve Performance

Source: Joseph Gonzalez. (2012)

Other Features (See Paper)

- Supports three execution modes:
 - Synchronous: Bulk-Synchronous GAS Phases
 - Asynchronous: Interleave GAS Phases
 - Asynchronous + Serializable: Neighboring vertices do not run simultaneously
- Delta Caching
 - Accelerate gather phase by caching partial sums for each vertex

System Design

- Implemented as C++ API
- Uses HDFS for Graph Input and Output
- Fault-tolerance is achieved by check-pointing
 - Snapshot time < 5 seconds for twitter network

Implemented Many Algorithms

- Collaborative Filtering
 - Alternating Least Squares
 - Stochastic Gradient
 Descent
 - SVD
 - Non-negative MF
- Statistical Inference
 - Loopy Belief Propagation
 - Max-Product Linear
 Programs
 - Gibbs Sampling

- Graph Analytics
 - PageRank
 - Triangle Counting
 - Shortest Path
 - Graph Coloring
 - K-core Decomposition

Computer Vision

- Image stitching
- Language Modeling
 - LDA

Comparison with GraphLab & Pregel

• PageRank on Synthetic Power-Law Graphs:

PowerGraph is robust to **high-degree** vertices.

50 Source: Joseph Gonzalez. (2012)

PageRank on the Twitter Follower Graph

Natural Graph with 40M Users, 1.4 Billion Links

PowerGraph is Scalable

Yahoo Altavista Web Graph (2002):

One of the largest publicly available web graphs **1.4 Billion Webpages, 6.6 Billion Links**

7 Seconds per Iter. 1B links processed per second 30 lines of user code

Summary

- Problem: Computation on Natural Graphs is challenging
 - High-degree vertices
 - Low-quality edge-cuts
- Solution: PowerGraph System
 - GAS Decomposition: split vertex programs
 - Vertex-partitioning: distribute natural graphs
- PowerGraph theoretically and experimentally outperforms existing graph-parallel systems.

Criticism - pros/cons

- PowerGraph, uses intelligent partitioning of vertices across servers. While this pre-processing reduces per iteration runtime, it is an expensive step by itself. [1]
- High Memory: store in, edges, mirror values
- Out-of-core storage: Support graphs that don't fit in memory (GraphChi)
- Maintenance of vertex replicas, communication-bound apply phase in the GAS abstraction [2]

References

[1] Hoque I, Gupta I. LFGraph: Simple and fast distributed graph analytics[C]//Proceedings of the First ACM SIGOPS Conference on Timely Results in Operating Systems. 2013: 1-17.

[2] Zhu X, Chen W, Zheng W, et al. Gemini: A {Computation-Centric} Distributed Graph Processing System[C]//12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16). 2016: 301-316.