PowerGraph: Distributed Graph-Parallel
Computation on Natural Graphs

J. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin
OSDI 2012

Background

1. Why Graph?
Machine Learning and Data Mining (MLDM) problems represented as
graphs ---> Graph structured computation is important

2. Current distributed graph computation systems
* Pregel
» GraphlLab

3. Problems: Existing distributed graph computation systems
perform poorly on Natural Graphs.

Challenges of Natural Graphs

Many Graphs have skewed degree distribution: a small fraction
of the vertices are adjacent to a large fraction of the edges

Power-Law Degree Distribution

More than 108 vertices

1 03()(...// have one neighbor.

High-Degree
Vertices

Number of Vertices

AltaVista WebGraph
1.4B Vertices, 6.6B Edges

10° 10°

Degree
Source: Joseph Gonzalez. (2012).

https://www.usenix.org/conference/osdi12/technical-sessions/presentation/gonzalez

How do we program
graph computation?

“Think like a Vertex.”

-Malewicz et al. [SIGMOD’10]

The Graph-Parallel Abstraction

1. A user-defined Vertex-Program runs on each vertex

2. Graph constrains interaction along edges
- Using messages (e.g. Pregel [PODC’09, SIGMOD’10])
- Through shared state (e.g., GraphLab [UAI'10, VLDB’12])

3. Parallelism: run multiple vertex programs simultaneously

Source: Joseph Gonzalez. (2012).

PageRank Algorithm

Rl =015+ » w;R[]

jENbrs(z)
Rank of
user j Weighted sum of

neighbors’ ranks

 Update ranks in parallel
* |terate until convergence

The Pregel Abstraction

Vertex-Programs interact by sending messages.

Pregel PageRank(i, messages) :

(// Receive all the messages

total = ©

foreach(msg in messages) :
total = total + msg

N

1%

// Update the rank of this vertex
{ R[i] = 0.15 + total |

(// Send new messages to neighbors
foreach(j in out_neighbors[i]) :
Send msg(R[i] * w;;) to vertex jJ

Malewicz et al. [PODC’09, SIGMOD’10]

The GraphlLab Abstraction

Vertex-Programs directly read the neighbors state

GraphLab_PageRank (1)
(// Compute sum over neighbors
total = @
foreach(j in in_neighbors(i)):
‘ total = total + R[j] * wy;

7 Update the PageRank
L R[i] = 0.15 + total

(// Trigger neighbors to run again
if R[i] not converged then

‘ foreach(j in out_neighbors(i)):

L signal vertex-program on j

Low et al. [UAI’10, VLDB'12]

Problem: Challenges of High-Degree Vertices

GraphLab and Pregel on Natural Graphs:

1.

Sl A

Work Imbalance

Qf
Partitioning ® » O O
Communication C/o
StO rage Sequentially process Sends many Touches a large Edge meta-data
] edges messages fraction of graph too large for single
COmpUta“C)n (Pregel) (GraphLab) machine

Asynchronous Execution Synchronous Execution
Source: Joseph Gonzalez. (2012). requires heavy locking (GraphLab) prone to stragglers (Pregel)

https://www.usenix.org/conference/osdi12/technical-sessions/presentation/gonzalez

Problem: Random Partitioning

* Both GraphlLab and Pregel resort to random
(hashed) partitioning on natural graphs

Ei

' |Edges Cut|

4

E]|

1
—1—=
P

10 Machines 2 90% of edges cut
100 Machines = 99% of edges cut!

Source: Joseph Gonzalez. (2012).

https://www.usenix.org/conference/osdi12/technical-sessions/presentation/gonzalez

In Summary

GraphlLab and Pregel are not well
suited for natural graphs

* Challenges of high-degree vertices
* Low quality partitioning

PowerGraph

* GAS Decomposition: distribute vertex-programs
— Move computation to data
— Parallelize high-degree vertices

* Vertex Partitioning:
— Effectively distribute large power-law graphs

A Common Pattern for Vertex-Programs

GraphLab_PageRank(1i)
~// Compute sum over neighbors

total = © Gather Information
foreach(j in in_neighbors(i)): .
total = total + R3] * wi, About Neighborhood .

K // Update the PageRank
R[i] = @.1 + total Update Vertex

// Trigger neighbors to run again
if R[i] not converged then Signal Neighbors &

foreach(j in out_neighbors(i)) Modify Edge Data
signal vertex-program on j

Source: Joseph Gonzalez. (2012).

Gather (Reduce)

Accumulate information
about neighborhood

User Defined:
» Gather(@—@) 2> 2

rIL®Z, D3,

Parallel
Sum

II

GAS Decomposition

Apply
Apply the accumulated
value to center vertex

User Defined:
» Apply(@), 2) > (B

.@}%

e

Scatter
Update adjacent edges
and vertices.

User Defined:
> Scatter(@~@) > —

Update Edge Data &
Activate Neighbor353

J

Source: Joseph Gonzalez. (2012).

PageRank in PowerGraph

Rl =015+ Y wjR[j]
jENbrs(7)

PowerGraph_PageRank(i)

Gather(j = i) :return w;* R[j]
sum(a, b) : returna + b;

Apply(d,2) : R[1]] =0.15 + 2

Scatter(i—=2j):
if R[i] changed then trigger j to be recomputed

Source: Joseph Gonzalez. (2012).

Edge Cut vs Vertex Cut

Two methods for partitioning the graph in a distributed
environment:
® Edge Cut (Used by Pregel and GraphlLab abstractions)

O] O 06 0@

~ | \C J / . C - @

! @ﬁ oF @4::@:':; @ (0 ©0——0
(a) Edge-Cut (b) Vertex-Cut

Figure 4: (a) An edge-cut and (b) vertex-cut of a graph into
three parts. Shaded vertices are ghosts and mirrors respectively.

New Approach to Partitioning

« Rather than cut edges:

- Must
— st
* synchronize
many edges

 We cut vertices

®] * Must
$ '._’: ; ‘ é :‘_.‘ synchronize a
single vertex

CPU 1 CPU 2

Source : Joseph Gonzalez. (2012).

New Approach to Partitioning

New Theorem:
For any edge-cut we can directly
construct a vertex-cut which requires
strictly less communication and storage.

Constructing Vertex-Cuts

* Evenly assign edges to machines
— Minimize machines spanned by each vertex

* Assign each edge as it is loaded
— Touch each edge only once

* Propose three distributed approaches:
— Random Edge Placement
— Coordinated Greedy Edge Placement
— Oblivious Greedy Edge Placement

Random Edge-Placement

- Randomly assign edges to machines

Machine 1 Machine 2 Machine 3
*—° O—@ \)

Balanced Vertex-Cut

o Spans 3 Machines
@ Spans 2 Machines

|
. NOt CUt . Source: Joseph Gonzalez. (2012).

Analysis Random Edge-Placement

e Expected number of machines spanned by a
vertex:

20
Twitter Follower Graph = 18
[] [] - :
41 Million Vertices = 12
[] [] Q
1.4 Billion Edges g 12
£ 10
-§ " —==Predicted
_ b =#=Random
Accurately Estimate RS 2
-~
Memory and Comm. g 2 l l | | l
Overhead w 8 18 28 38 48 58

Number of Machines

Source: Joseph Gonzalez. (2012).

Random Vertex-Cuts vs. Edge-Cuts

* Expected improvement from vertex-cuts:

100
(<)
1)
o
E S
o) 7y
£ 10
-
& E Order of Magnitude
S Improvement
1 | : .
0 50 100 150

Number of Machines Source: Joseph Gonzalez. (2012}

Greedy Vertex-Cuts

* Place edges on machines which already have
the vertices in that edge.

Machinel Machine 2

Source: Joseph Gonzalez. (2012).

Greedy Vertex-Cuts

* De-randomization = greedily minimizes the
expected number of machines spanned

* Coordinated Edge Placement
— Requires coordination to place each edge
— Slower: higher quality cuts
* Oblivious Edge Placement
— Approx. greedy objective without coordination
— Faster: lower quality cuts

Partitioning Performance

Twitter Graph: 41M vertices, 1.4B edges

Cost Construction Time
E 18 1000 \
c 16 s
c 7))
S 14 e 800 \
“ 8
g 12 & 600 #
= 10) '
8 g E 400
5 6 £ 200 -
™oy 5 Ra
% £ Ndom
g 2 | | 1 1 T : 1 .E 0 T T 1 1 T T |
8 16 24 32 40 48 56 64 c'f 8 16 24 32 40 48 56 64
Number of Machines Number of Machines

Oblivious balances cost and partitioning time.

Source: Joseph Gonzalez. (2012).

Greedy Vertex-Cuts Improve Performance

0.9 - M Random
~ Oblivious

oordinated

Runtime Relative
a

PageRank Collaborative Shortest Path
Filtering

Greedy partitioning improves
comPUtation performance' 45 Source: Joseph Gonzalez. (2012).

Other Features (See Paper)

* Supports three execution modes:
— Synchronous: Bulk-Synchronous GAS Phases
— Asynchronous: Interleave GAS Phases

— Asynchronous + Serializable: Neighboring vertices
do not run simultaneously

* Delta Caching

— Accelerate gather phase by caching partial sums
for each vertex

System Design

MPI/TCP-IP PThreads

EC2 HPC Nodes

Source: Joseph Gonzalez. (2012).

* Implemented as C++ API
* Uses HDFS for Graph Input and Output

* Fault-tolerance is achieved by check-pointing
— Snapshot time < 5 seconds for twitter network

Implemented Many Algorithms

* Collaborative Filtering * Graph Analytics

— Alternating Least Squares — PageRank
— Stochastic Gradient — Triangle Counting
Descent — Shortest Path

— SVD — Graph Coloring

— Non-negative MF — K-core Decomposition
e Statistical Inference e Computer Vision

— Loopy Belief Propagation — Image stitching

— Max-Product Linear

* Language Modeling
— LDA

Programs
— Gibbs Sampling

Comparison with GraphLab & Pregel

Total Network (GB)

e PageRank on Synthetic Power-Law Graphs:

Communication

(WY
o

8 b4
\Pregel (Piccolo)

6
Graphlab
4 '

Power-Law Constant a

<«— High-degree vertices

PowerGraph is robust to high-degree vertices.

Runtime

30;\

\Pregel (Piccolo)

2 2.2

Power-Law Constant a

<— High-degree vertices

Source: Joseph Gonzalez. (2012).

PageRank on the Twitter Follower Graph

Natural Graph with 40M Users, 1.4 Billion Links

Communication Runtime

40 70

35 60
o 30 - 50 -
©
x w 40
o 20 -
= o 30 - ,
£ 15 | S
= w0 -
= 10
S 5 - 10

g | | s | | —

Graphlab Pregel PowerGraph GraphlLab Pregel PowerGraph
(Piccolo) (Piccolo)

Reduces Communication Runs Faster

Source: Joseph Gonzalez. (2012).

PowerGraph is Scalable

Yahoo Altavista Web Graph (2002):
One of the largest publicly available web graphs

1.4 Billion Webpages, 6.6 Billion Links

7 Seconds per lter.

1B links processed per second
30 lines of user code

Summary

* Problem: Computation on Natural Graphs is
challenging

— High-degree vertices
— Low-quality edge-cuts

e Solution: PowerGraph System

— GAS Decomposition: split vertex programs
— Vertex-partitioning: distribute natural graphs

* PowerGraph theoretically and experimentally
outperforms existing graph-parallel systems.

Criticism - pros/cons

« PowerGraph, uses intelligent partitioning of vertices across
servers. While this pre-processing reduces per iteration runtime,
it is an expensive step by itself. [1]

* High Memory: store in, edges, mirror values

» Qut-of-core storage: Support graphs that don’t fit in memory
(GraphChi)

* Maintenance of vertex replicas, communication-bound apply
phase in the GAS abstraction [2]

PowerGraph

source: link

https://slideplayer.com/slide/4768409/

References

[1] Hoque |, Gupta I. LFGraph: Simple and fast distributed graph
analytics[C]//Proceedings of the First ACM SIGOPS Conference

on Timely Results in Operating Systems. 2013: 1-17.

[2] Zhu X, Chen W, Zheng W, et al. Gemini: A {Computation-
Centric} Distributed Graph Processing System|[C]//12th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI 16). 2016: 301-316.

