
A Distributed Multi-GPU
System for Fast Graph 

Processing 

Presented by

Ridwan Muheeb

rm2084

Zhihao Jia, Yongkee Kwon, Galen Shipman, Pat McCormick,

Mattan Erez, and Alex Aiken.



Historical Contexts

• The rapidly growing sizes of real-world graphs and recent advances
in computing processing hardware have inspired the implementation
of faster and scalable graph analysis tools on GPUs.

• For instance:
• Facebook 2.96 billion monthly active users
• 2.61 billion pages world wide web graphs

• Why GPUs?

• GPU offers high bandwidth memory access and massive degree
parallelism suitable for largescale graph data processing.

• Unfortunately, graph computations’ have irregular data access,
conditional branches, and the cost of moving data from host CPU to
GPU poses significant challenge.



Motivation

• Limited work has been done to exploit high memory bandwidth
of multiple GPUs for graph processing. Because
• Compatibility issues – traditional data placement, transfer and load

balancing approaches are not optimal for multiple GPU clusters.

• Frameworks algorithms interfering with runtime optimizations
necessary for GPU performance.

Solution

• Lux, a distributed system that exploit aggregate memory
bandwidth and hierarchy of multi-GPU for fast graph processing



Key Ideas

• Graph data is distributed across the memories of multiple
DRAM and GPUs to reduce data transfers within the memory
hierarchy.

• Provides two execution models that delays updating vertices
until the end of every iteration effectively ensuring no
communication between GPUs during an epoch.
• Pull - for improving algorithmic optimization and
• Push - to enhance hardware (GPU) optimizations.

• Achieved load balancing by dynamically repartitioning graphs
based on runtime performance and detection of workload
imbalance.



Implementation
• Data placement and execution

models were built on the Legion’s
abstraction developed by Michael et
al (2012).

• Two approaches are used to load
input data.
• GPU kernel approach – kernel copies

vertices from shared zero-copy memory
to the device memory. Done entirely by
the GPU, no CPU is involved. Used for
pull based execution model.

• CPU core approach – collaboratively
gather vertices using CPU and do bulk
transfer to the GPU. Used in push
based execution model.

Source: Jia et al (2017)



Implementation

• Combines cooperative and individual threads processing
to achieve coalesced memory access.

Source: Jia et al (2017)



Performance – Single GPU Results

• Lagged behind other similar frameworks in PageRanking (PR),
Connected Components (CC), Single Source Shortest Path
(SSSP) and Betweeness Centrality (BC).

• Obtained 1.5-5x speedup compared to other similar frameworks in
Collaboratively Filtering

Source: Jia et al (2017)



Performance – Multiple GPU Results

• Achieved 1.3-7x speedup when compared with Ligra, Galois, Polymer.

• Unfortunately, Low speedup caused by performance overhead due to overlapping
operations.

• Outperforms Medusa and Groute by 1.5-2.5x in CC, SSSP, and BC and 10-20x in
Page Ranking and Collaborative Filtering.

• Improvements made possible by coalesced memory access.

Source: Jia et al (2017)



Performance – Load Balancing

• Dynamic repartitioning reduced runtime by half.

• Although balancing workload across multiple nodes
caused twice migration cost during initial epochs.

Source: Jia et al (2017)



Pros

• Impressively harnessed multiple GPUs properties for faster
largescale graph processing.

• Load balancing achieved using dynamic repartitioning.

• Combination of different approaches to achieve load balance 
was impressive.



Criticisms

• Design and experiments too focused on a single node.

• System susceptible to performance overhead because of
overlapping operations.

• Overall performance wasn’t significant but mere improvements
on existing system.

• Dynamic repartitioning do not favour irregular per iteration
workloads e.g. Single Source Shortest Path (SSSP).



Future work findings

• Later works suggest the system lacks the capability to be
adopted for graph neural networks processing.

• Further optimizations are required to support machine learning
graph models training.



Bibliography

• Shi, Xuanhua, et al. "Graph processing on GPUs: A survey." ACM
Computing Surveys (CSUR) 50.6 (2018): 1-35.

• https://www.worldwidewebsize.com/

• Bauer, Michael, et al. "Legion: Expressing locality and independence with
logical regions." SC'12: Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis. IEEE,
2012.

• Jia, Zhihao, et al. "A distributed multi-gpu system for fast graph
processing." Proceedings of the VLDB Endowment 11.3 (2017): 297-310.

• Ma, Lingxiao, et al. "{NeuGraph}: Parallel Deep Neural Network
Computation on Large Graphs." 2019 USENIX Annual Technical
Conference (USENIX ATC 19). 2019.

• Pan, Yuechao. Multi-GPU Graph Processing. Diss. University of California,
Davis, 2019.

https://www.worldwidewebsize.com/

