A Distributed Multi-GPU
System for Fast Graph
Processing

Zhihao Jia, Yongkee Kwon, Galen Shipman, Pat McCormick,
Mattan Erez, and Alex Aiken.

Presented by
Ridwan Muheeb
rm2084

Historical Contexts

* The rapidly growing sizes of real-world graphs and recent advances
In computing processing hardware have inspired the implementation
of faster and scalable graph analysis tools on GPUs.

* For instance:
« Facebook 2.96 billion monthly active users

« 2.61 billion pages world wide web graphs -
 Why GPUs?

 GPU offers high bandwidth memory access and massive degree
parallelism suitable for largescale graph data processing.

« Unfortunately, graph computations’ have irregular data access,
conditional branches, and the cost of moving data from host CPU to
GPU poses significant challenge.

Motivation

 Limited work has been done to exploit high memory bandwidth
of multiple GPUs for graph processing. Because

« Compatibility issues — traditional data placement, transfer and load
balancing approaches are not optimal for multiple GPU clusters.

 Frameworks algorithms interfering with runtime optimizations
necessary for GPU performance.

Solution

* Lux, a distributed system that exploit aggregate memory
bandwidth and hierarchy of multi-GPU for fast graph processing

Key ldeas

 Graph data Is distributed across the memories of multiple
DRAM and GPUs to reduce data transfers within the memory
nierarchy.

* Provides two execution models that delays updating vertices
until the end of every iteration effectively ensuring no
communication between GPUs during an epoch.

« Pull - for improving algorithmic optimization and
* Push - to enhance hardware (GPU) optimizations.
« Achieved load balancing by dynamically repartitioning graphs

based on runtime performance and detection of workload
imbalance.

Implementation

- Data placement and execution
models were built on the Legion’s
abstraction developed by Michael et
al (2012).

* Two approaches are used to load
Input data.

« GPU kernel approach — kernel copies
vertices from shared zero-copy memory
to the device memory. Done entirely by
the GPU, no CPU is involved. Used for
pull based execution model.

« CPU core approach — collaboratively
gather vertices using CPU and do bulk
transfer to the GPU. Used in push
based execution model.

(a) GPU kernel approach. (b) CPU core approach.
Figure 13: Different approaches for loading input data.

Source: Jia et al (2017)

Implementation

« Combines cooperative and individual threads processing
to achieve coalesced memory access.

V, v .
. W
| (1117

b L * ok ' ST FIR SR I S PR PR P L
(a) Individual processing. (b) Cooperative processing,.
Figure 14: Different approaches for processing graphs.

Source: Jia et al (2017)

Performance — Single GPU Results

Source: Jia et al (2017)

1gure »: Performance COMparison on a single Ly [10Wer 18 De er).

* Lagged behind other similar frameworks in PageRanking (PR),
Connected Components (CC), Single Source Shortest Path
(SSSP) and Betweeness Centrality (BC).

* Obtained 1.5-5x speedup compared to other similar frameworks in
Collaboratively Filtering

Performance — I\/IuItipIe GPU Results

Elapsed time {ms)

N |lu r-1 ..I- COTW |
FR |1 iteratig S555P CF {1 iteration}

Figure lﬁ: 'l'ht} excecution time for different graph processing lr;unt...vi.- orks (lower is better).

[|L|r._'| Qalois rl,r =) 1 Best of [PowerGraph, Grap

1 Ir (TOTW .'-.-'

IJI' (3" W ’H | L= HI'

Source: Jia et al (2017)
Achieved 1.3-7x speedup when compared with Ligra, Galois, Polymer.

Unfortunately, Low speedup caused by performance overhead due to overlapping
operations.

Outperforms Medusa and Groute by 1.5-2.5x in CC, SSSP, and BC and 10-20x In
Page Ranking and Collaborative Filtering.

Improvements made possible by coalesced memory access.

i o 5 [E] 1 | d 1
lterations lterations

erations = L]
Figure 18: Performance comparison for different dynamic
repartitioning approaches. The horizontal line shows the

cxpoected per-iteration run time with perfect load balancing.

Source: Jia et al (2017)
« Dynamic repartitioning reduced runtime by half.

« Although balancing workload across multiple nodes
caused twice migration cost during initial epochs.

Pros

mpressively harnessed multiple GPUs properties for faster
argescale graph processing.

_oad balancing achieved using dynamic repartitioning.

Combination of different approaches to achieve load balance
was impressive.

Criticisms

* Design and experiments too focused on a single node.

« System susceptible to performance overhead because of
overlapping operations.

* Overall performance wasn’t significant but mere improvements
on existing system.

 Dynamic repartitioning do not favour irregular per iteration
workloads e.g. Single Source Shortest Path (SSSP).

Future work findings

« Later works suggest the system lacks the capability to be
adopted for graph neural networks processing.

* Further optimizations are required to support machine learning
graph models training.

Bibliography

« Shi, Xuanhua, et al. "Graph 6processing] on GPUs: A survey." ACM
Computing Surveys (CSUR) 50.6 (2018): 1-35.

« Bauer, Michael, et al. "Legion: Expressin% locality and independence with
logical regions." SC'12: Proceedings of the International Conference on
E(I) g Performance Computing, Networking, Storage and Analysis. |IEEE,

« Jia, Zhihao, et al. "A distributed multi-gpu system for fast graph
processing." Proceedings of the VLDB Endowment 11.3 (2017): 297-310.

« Ma, Lingxiao, et al. "{NeuGraph}. Parallel Deep Neural Network
Computation on Large Graphs." 2019 USENIX Annual Technical
Conference (USENIX ATC 19). 2019.

« Pan, Yuechao. Multi-GPU Graph Processing. Diss. University of California,
Davis, 2019.

https://www.worldwidewebsize.com/

