
Green-Marl: A DSL for Easy and
Efficient Graph Analysis

Sungpack Hong, Hassan Chafi,
Eric Sedlar, Kunle Olukotun

Presentation by Anna Talas for R244

Motivation
● Increasing need for large-scale graph analysis
● Efficient execution remains difficult

○ Capacity
■ Limited physical memory

○ Performance
■ Dependant on size

○ Implementation
■ Requires knowledge of algorithm and hardware

Related works
● Open Multi-Processing
● SNAP library
● GraphLab

○ Future backend

Problem to solve
● Concurrent programming and optimisation is difficult
● Software developers don’t want to use new languages

○ (Rewriting code is tedious)

● Contribution from authors:
○ Green-Marl
○ Green-Marl compiler
○ Interdisciplinary DSL approach

Green-Marl
● DSL - Domain-Specific Language
● Intuitive
● Exposes inherent parallelism

○ Fork-join style
● Built-in constructs for graph

analysis
● Can calculate:

○ New property
○ Subgraph selection
○ Scalar value e.g. conductance

Green-Marl compiler
● Automatic optimisation and

parallelisation
● Uses OpenMP
● Templates for DFS and BFS
● Can detect some conflicts

○ E.g. read-write

● Different optimisations:
○ E.g. Loop Fusion, Reduction Bound

Relaxation
○ Architecture dependent

optimizations

Loop Fusion

Set-Graph Loop Fusion

Data types

Evaluation
● Works as well (or better)

than highly-tuned
hand-coded
implementations

● Parallel graph library SNAP
○ 3 different algorithms
○ 32M nodes, 256M edges
○ Small instance: 100k nodes,

800k edges

Fewer lines of code

Limitations
● Only graphs which fit into physical memory
● The graph must be immutable
● No aliases between graph properties
● Type conversion may be needed
● So far only C++ supported
● Plans for future works:

○ Support alternative architectures, e.g. clusters, GPUs
○ plan to preserve comment blocks in future versions of our compiler.
○ interpreter for Green-Marl applications that will feature step-wise code execution and a

visual graph representation.

Impact

Impact

Current situation
● Not the fastest anymore (except Betweenness Centrality)
● Still the fewest lines of code
● GraphIt

Opinion
● The good:

○ Low-effort parallelisation
○ Intuitive to use
○ Fast and minimal code needed
○ No need to re-write whole application
○ Optimisations aren’t hardware specific

● The bad:
○ Scalability is limited

■ Only C++
■ Immutable graphs only

○ The optimisation isn’t novel
○ Still needs time to get used to
○ testing is done only against SNAP

Thank you!

Bibliography
● S. Hong, H. Chafi, E. Sedlar, K.Olukotun: Green-Marl: A DSL for Easy and

Efficient Graph Analysis, ASPLOS, 2012

.

● Yunming Zhang, Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil, Julian
Shun, and Saman Amarasinghe. 2018. GraphIt: a high-performance graph
DSL. Proc. ACM Program. Lang. 2, OOPSLA, Article 121 (November 2018),
30 pages.

