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Work at the time

• Good single-machine frameworks:
• High performance: Caffe
• High flexibility: Torch, Theano

• Good multiple-machine frameworks:
• DryadLINQ, Spark

• Low flexibility: data must be immutable – ML training becomes slow 
• MXNet

• Similar to TensorFlow
• Parameter server architecture – cannot do sparse gradient updates 

• DistBelief
• Does not scale down well
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Motivation
• TensorFlow comes from the Google Brain team
• DistBelief is its predecessor

• cannot easily define new types of layers in NN architectures
• Cannot modify the optimisation algorithm (SGD)
• Cannot modify the training algorithm (pipeline works only for 

Feedforward Neural Networks)

• Goal: build a framework that is both flexible and scalable
• Platform-agnostic: can scale up to any number/type of device
• Offer flexibility in the design of ML pipelines – create an API for 

popular programming languages 
• Use the same programming language for ML design and distributed 

systems design
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Design principles (1)
• Computation described by a dataflow graph
• Nodes represent operations
• Edges represent dependencies
• E.g. ReLU(b + W*x)

• Data flows through the graph using tensors
• Typed, multi-dimensional arrays

• TensorFlow automatically builds a gradient 
graph for the Backpropagation algorithm

• TensorFlow optimises the dataflow graph 
(e.g. with common subexpression 
elimination) 4



Design principles (2)
• Client communicates with a master
• Master communicates with worker processes
• Workers control devices (CPUs, GPUs, TPUs etc.)
• Devices get a subgraph of the initial dataflow graph

• Each device has its own implementation (called kernel) of the operation to 
execute

• Fault tolerance: user-level checkpointing
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Distributed execution

• Greedy heuristic used to choose which node to assign to which 
device
• Workers send data across only once for multiple nodes on a 

different worker [TensorFlow has weak consistency 
guarantees]
• (A)synchronous replica coordination 

• Can have synchronous ML training
• TensorFlow proactively prepares 
backup workers in case stragglers 
exist
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Key innovations

• Dynamic control flow
• Can have conditional and iterative control flow – now possible to 

implement RNNs

• Nodes represent single operations and can hold and update 
state
• Dataflow systems at the time: nodes represent functional computation on 

immutable data
• Abstracted computation kernels for heterogeneous distributed systems

• Optimisation – can experiment with new algorithms
• Ability to scale up and down 
• Really cool visualization system: TensorBoard
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Experimental results

• Single-machine benchmarks
• TensorFlow similar to Torch because 

they use the same matrix 
multiplication library

• Multi-machine benchmarks
• TensorFlow compared to MXNet for 

the Inception-v3 model

• Key takeaway: TensorFlow has 
similar performance to its 
competitors, but it is much more 
flexible!
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Limitations

• Algorithm to schedule nodes uses a greedy heuristic
• Paper does not show how fast ML training converges
• Paper does not show experimental results for RNNs 
• Training for Reinforcement Learning is still too limited
• Not suitable for applications with strong consistency 

requirements
• Training slower than in other frameworks because of the use of 

cuDNN library for matrix multiplication
• Does not have fine-grained control over execution order and 

memory requirements
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Impact & Future

• Widely adopted ML framework
• Used in hundreds of research papers
• Downloaded by millions of users

• Nowadays, TensorFlow is losing ground to PyTorch and the new 
MLGO
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Any questions?
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