
Ray: A Distributed Framework 
for Emerging AI Applications

R244: Large-Scale Data Processing and Optimisation

Kian Cross

Moritz, P., Nishihara, R., Wang, S., Tumanov, A., Liaw, R., Liang, E., ... & Stoica, I. (2018). Ray: A 
distributed framework for emerging AI applications. In 13th USENIX Symposium on Operating 

Systems Design and Implementation (OSDI 18) (pp. 561-577).



Background

• Reinforcement learning applications "rely heavily on simulations"

• "This generally requires massive amounts of computation"

• "The computation graph of an RL application is heterogeneous and 
evolves dynamically"

• Some RL-based applications require low-latency

• Is there a cluster computing framework that satisfies these 
requirements?



Existing Solutions

Map-Reduce

CIEL

These don't support the throughputs or latencies required



Requirements for a New Framework

• Flexible
• Execution of concurrent, heterogenous tasks

• Support dynamic task graphs

• Performant
• Schedule tasks in less than a millisecond

• Schedule millions of tasks per second

• Easy development
• Deterministic replay and fault tolerance

• Easy parallelization of existing algorithms



What is Ray?

• Published in 2017 

• A Python library

• For distributed computing

• Motivated by the needs of reinforcement learning applications



Application Layer

• Driver: A process executing the user program.

• Worker: A stateless process that remote functions invoke by a driver 
or another worker.

• Actor: A stateful process that executes, when invoked, the methods it 
exposes.



System Layer

• Global Control Store: Stores all up-to-date metadata and control state 
information in the system.

• Bottom-Up Distributed Scheduler: Tasks are submitted to the local 
scheduler first, which delegates to the global scheduler if necessary.

• In-Memory Distributed Object Store: Shared memory on workers and 
actors to share data efficiently.
• Object reconstruction by ‘replaying’ computation subgraphs with all inputs 

available.



Architecture



Bottom-up Distributed Scheduler



Task Graph



Evaluation of Performance



Evaluation of Performance (Checkpointing)



Problems

• Very simple API

• Requires manual configuration of Global Control Store shards and 
global schedulers



Where is Ray today?
• Successful open source project

• RLlib: Abstractions for 
Distributed Reinforcement 
Learning

• Tune: A Research Platform for 
Distributed Model Selection and 
Training



Questions and discussion...


