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Background

* Reinforcement learning applications "rely heavily on simulations”
* "This generally requires massive amounts of computation”

* "The computation graph of an RL application is heterogeneous and
evolves dynamically"

 Some RL-based applications require low-latency

* |s there a cluster computing framework that satisfies these
requirements?



Existing Solutions
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Parallel computing with task scheduling ' C I E L

These don't support the throughputs or latencies required



Requirements for a New Framework

* Flexible

e Execution of concurrent, heterogenous tasks
e Support dynamic task graphs

e Performant
 Schedule tasks in less than a millisecond
* Schedule millions of tasks per second

* Easy development
e Deterministic replay and fault tolerance
* Easy parallelization of existing algorithms



oop RAY

Published in 2017

A Python library

What is Ray?

For distributed computing

Motivated by the needs of reinforcement learning applications



Application Layer

* Driver: A process executing the user program.

* Worker: A stateless process that remote functions invoke by a driver
or another worker.

* Actor: A stateful process that executes, when invoked, the methods it
EXpOoses.



System Layer

* Global Control Store: Stores all up-to-date metadata and control state
information in the system.

e Bottom-Up Distributed Scheduler: Tasks are submitted to the local
scheduler first, which delegates to the global scheduler if necessary.

* In-Memory Distributed Object Store: Shared memory on workers and
actors to share data efficiently.

e Object reconstruction by ‘replaying’ computation subgraphs with all inputs
available.
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Bottom-up Distributed Scheduler
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Task Graph

(@ray.remote

def create_policy():
# Initialize the policy randomly.
return policy

(@ray.remote(num_gpus=1)
class Simulator(object):
def _init__ (self):
# Initialize the environment.
self.env = Environment()
def rollout(self, policy, num_steps):
observations =[]
observation = self.env.current_state()
for _inrange(num_steps):
action = compute(policy, observation)
observation = self.env.step(action)

observations.append(observation)
return observations

(@ray.remote(num_gpus=2)

def update_policy(policy, *rollouts):
# Update the policy.
return policy

(@ray.remote
def train_policy():
# Create a policy.
policy 1d = create_policy.remote()
# Create 10 actors.
simulators = [Simulator.remote() for _in range(10)]
# Do 100 steps of training.
for inrange(100):
# Perform one rollout on each actor.
rollout 1ds = [s.rollout.remote(policy) for s in simulators]
# Update the policy with the rollouts.
policy id = update_policy.remote(policy 1d,
*rollout ids)
return ray.get(policy id)
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Evaluation of Performance
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Figure 7: End-to-end scalability of the system is achieved in
a linear fashion, leveraging the GCS and bottom-up distributed
scheduler. Ray reaches 1 million tasks per second throughput
with 60 m4.16xlarge nodes and processes 100 million tasks in
under a minute. We omit x € {70,80,90} due to cost.

Figure 8: Ray maintains balanced load. A driver on the first
node submits 100K tasks, which are rebalanced by the global
scheduler across the 21 available nodes.



Evaluation of Performance (Checkpointing)

700 ; 700 .
7 Original tasks Original tasks
o 600 Reexecuted tasks | 600 7 Reexecuted tasks
V4 i —— Checkpoint tasks
v 500 | 500 A
© |
= 400 i 400 {#HIIL fl.ﬂ“‘..
45’ : :| 1l ""F'Irl Ji W
Q 300 | 300 - L
< I I
(@) I |
= 200 | 200 |
(@) : :
| -
£ 100 : 100 A I
= | |

O Ll ! T T 0 1 ! 1 Ll
100 200 300 400 100 200 300 400

Time since start (s) Time since start (s)

(a) without checkpointing (b) with checkpointing
Figure 11: Fully transparent fault tolerance for actor methods.
The driver continually submits tasks to the actors in the cluster.
Att = 200s, we kill 2 of the 10 nodes, causing 400 of the 2000
actors in the cluster to be recovered on the remaining nodes.



Problems

* Very simple API

* Requires manual configuration of Global Control Store shards and
global schedulers



Where is Ray today?

e Successful open source project

* RLlib: Abstractions for ray—prOjeCt/ray 0§>

Distributed Reinforcement
Ray is a unified framework for scaling Al and Python

Learning o ;
applications. Ray consists of a core distributed
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Questions and discussion...



