Ray: A Distributed Framework
for Emerging Al Applications

R244: Large-Scale Data Processing and Optimisation

Kian Cross

Background

* Reinforcement learning applications "rely heavily on simulations”
* "This generally requires massive amounts of computation”

* "The computation graph of an RL application is heterogeneous and
evolves dynamically"

 Some RL-based applications require low-latency

* |s there a cluster computing framework that satisfies these
requirements?

Existing Solutions

Map-Reduce SﬁAaEr"QZ

dask/dask r
Parallel computing with task scheduling ' C I E L

These don't support the throughputs or latencies required

Requirements for a New Framework

* Flexible

e Execution of concurrent, heterogenous tasks
e Support dynamic task graphs

e Performant
 Schedule tasks in less than a millisecond
* Schedule millions of tasks per second

* Easy development
e Deterministic replay and fault tolerance
* Easy parallelization of existing algorithms

oop RAY

Published in 2017

A Python library

What is Ray?

For distributed computing

Motivated by the needs of reinforcement learning applications

Application Layer

* Driver: A process executing the user program.

* Worker: A stateless process that remote functions invoke by a driver
or another worker.

* Actor: A stateful process that executes, when invoked, the methods it
EXpOoses.

System Layer

* Global Control Store: Stores all up-to-date metadata and control state
information in the system.

e Bottom-Up Distributed Scheduler: Tasks are submitted to the local
scheduler first, which delegates to the global scheduler if necessary.

* In-Memory Distributed Object Store: Shared memory on workers and
actors to share data efficiently.

e Object reconstruction by ‘replaying’ computation subgraphs with all inputs
available.

Architecture

o Node Node Node
o
©
;’_ = Driver Worker Actor Driver Worker || Worker
2- -
Object Store > Object Store p— Object Store
i Local Scheduler Local Scheduler Local Scheduler
3] -~
[==
6 \l/
-
=
S _ Global Control State (GCS) [,4 Web Ul
© ’
= Obiject Table .
= Global : /.-~ Debugging Tools
"i Scheduler Task Table i:: §
? 'S Function Table I\, * Profiling Tools
AL " Error Diagnosis
|
- |

Bottom-up Distributed Scheduler

G D -

Node 1 | ' Node N!
Driver Worker Worker Worker Worker
Local Scheduler Local Scheduler

Global Global
Scheduler Scheduler

mlp Submit =) Schedule = =p |oad
— tasks — tasks ====p N0

Task Graph

(@ray.remote

def create_policy():
Initialize the policy randomly.
return policy

(@ray.remote(num_gpus=1)
class Simulator(object):
def _init__ (self):
Initialize the environment.
self.env = Environment()
def rollout(self, policy, num_steps):
observations =[]
observation = self.env.current_state()
for _inrange(num_steps):
action = compute(policy, observation)
observation = self.env.step(action)

observations.append(observation)
return observations

(@ray.remote(num_gpus=2)

def update_policy(policy, *rollouts):
Update the policy.
return policy

(@ray.remote
def train_policy():
Create a policy.
policy 1d = create_policy.remote()
Create 10 actors.
simulators = [Simulator.remote() for _in range(10)]
Do 100 steps of training.
for inrange(100):
Perform one rollout on each actor.
rollout 1ds = [s.rollout.remote(policy) for s in simulators]
Update the policy with the rollouts.
policy id = update_policy.remote(policy 1d,
*rollout ids)
return ray.get(policy id)

To
train_policy

11
rollout

rollout,,

h policy,
roIIo

rnllout}_1 '
update poll

rollout,,

N

u date _poli

rollout,,

[Jobject

—» data edges

@task/method

---pcontrol edges

|:> stateful edges

Evaluation of Performance

21—

R N R TS

14l 7T 5100 ; g ' l

5 L2fd bbb 2 D % gobb |=0 executed tasks

§ 1O |E= submitted tasks

O R L o e : s O60H- 4 :

(D] 0'8k . . X . 4 P (@] . .

N . . : 3~ : . P

E 06, ,,,,,,,,, ,,,,,,,,, //z ,,,,,,,,, 7 = 40 S

PSS T 1 1 e -]) RN N DR S

9 0.2} NN NS BN REES B 4 20 _ ‘ _ |

% 0.0 I | I l I t l B 0 1 1 | I | 1 1 1 1 1 1 1 | - 1 I 1 =1 |

+ 10 20 30 40 50 60 100 0 5 10 15 20
number of nodes nodes

Figure 7: End-to-end scalability of the system is achieved in
a linear fashion, leveraging the GCS and bottom-up distributed
scheduler. Ray reaches 1 million tasks per second throughput
with 60 m4.16xlarge nodes and processes 100 million tasks in
under a minute. We omit x € {70,80,90} due to cost.

Figure 8: Ray maintains balanced load. A driver on the first
node submits 100K tasks, which are rebalanced by the global
scheduler across the 21 available nodes.

Evaluation of Performance (Checkpointing)

700 ; 700 .
7 Original tasks Original tasks
o 600 Reexecuted tasks | 600 7 Reexecuted tasks
V4 i —— Checkpoint tasks
v 500 | 500 A
© |
= 400 i 400 {#HIIL fl.ﬂ“‘..
45’ : :| 1l ""F'Irl Ji W
Q 300 | 300 - L
< I I
(@) I |
= 200 | 200 |
(@) : :
| -
£ 100 : 100 A I
= | |

O Ll ! T T 0 1 ! 1 Ll
100 200 300 400 100 200 300 400

Time since start (s) Time since start (s)

(a) without checkpointing (b) with checkpointing
Figure 11: Fully transparent fault tolerance for actor methods.
The driver continually submits tasks to the actors in the cluster.
Att = 200s, we kill 2 of the 10 nodes, causing 400 of the 2000
actors in the cluster to be recovered on the remaining nodes.

Problems

* Very simple API

* Requires manual configuration of Global Control Store shards and
global schedulers

Where is Ray today?

e Successful open source project

* RLlib: Abstractions for ray—prOjeCt/ray 0§>

Distributed Reinforcement
Ray is a unified framework for scaling Al and Python

Learning o ;
applications. Ray consists of a core distributed
 Tune: A Research Platform for runtime and a...
Distributed Model Selection and
Training
A 737 R 6k w22k ¥ 4k O
Contributors Used by Stars Forks

Questions and discussion...

