
Pathways: Asynchronous Distributed
Dataflow for ML

Paul Barham Aakanksha Chowdhery Jeff Dean Sanjay Ghemawat Steven Hand Dan Hurt
Michael Isard Hyeontaek Lim Ruoming Pang Sudip Roy Brennan Saeta Parker Schuh Ryan Sepassi

Laurent El Shafey Chandramohan A. Thekkath
Yonghui Wu

Presentation by George Barbulescu | R244 | 19/10/2022

1

Problem Statement

 Co-evolution across…
 ML algorithms, especially Deep Learning

 Hardware resources

 Distributed ML systems

 SOTA ML orchestration software
 Single Program Multiple Data

 Lockstep synchronised as per MPI (Clarke et. al, 1994)

 Prone to “overfitting” the underlying accelerator profile

2

Background

 Multi-controller Architecture
 Tools such as PyTorch and JAX

 Assume exclusive ownership of the underlying hardware profile

 Coordination primitives are restricted

 Robust choice for building supercomputers due to PCIe dispatch

 Single-controller Architecture
 Spark, TF, MapReduce

 High dispatch latency since workers communicate via DCN

 Hard to scale up horizontally due to controller coordination overhead

 Flexible model and virtualization opportunities

3

Single-Controller
Architecture

4

 Dataflow graph is split into
subgraphs

 Work is dispatched to hosts via
the datacentre network

 What happens if we add an
accelerator?

Unless otherwise noted, the figures in this presentation are
taken from P. Barham, et al.: Pathways: Asynchronous
Distributed Dataflow for ML, MLSys, 2022. (Conference
presentation/ manuscript submission to MLSys 2022)

Multi-Controller
Architecture

5

 The client is cloned across
multiple processes

 Stepwise lock based on Single
Program Multiple Data

 Restrictive in terms of resource
ownership and communication

 Efficient horizontal scaling!

Pathways runtime

 Distributed ML runtime for cluster-wide orchestration.
 Single-controller architecture

 Contributions
 Sharded dataflow model with asynchronous operators

 Decoupling between the control-plane and the data-plane

 Asynchronous dispatch for masking single-controller latency

 Gang-scheduling for expressive non-SPMD computations

 Cluster-wide resource managing and virtualization for heterogenous
accelerator scale-up (up to islands of TPUs!)

6

Insightful findings!

 Machine Learning workloads are historically “free” from complex
data-driven control flow

 A high-percentage of functions classify as Accelerated Linear
Algebra (XLA) computations
 Functional data-driven conditions with predictable resource

consumption for either branch

 Bounded loops with early termination

 Input and output types and shapes are known a priori

7

Sequential dispatch
strategy

 Brute force conversion from
dataflow to an asynchronous
enqueuing strategy

 Reduce dispatch time over
DCN but accelerators
outperform queueing

 The bottleneck is in the
control plane

8

Parallel dispatch

 Control-plane latency is
masked by accelerator

 Futures are sent in parallel
across hosts via DCN

 Data is sent to the input
buffer address after
computation ends via ICI

 What happens if there’s
data-driven control?

9

10

11

Implementation for
JAX

 Why not Jax?
 Multi-controller architectures

are fit for one TPU pod.
 Can we run unmodified JAX

code?
 Tracer @pw.program

12

Evaluation

13

Evaluation

14

Review

 Strengths and Impact
 Aims to introduce a new era of distributed ML frameworks that revert to

the single-controller architecture

 Efficient attempt to coordinate multiple islands of TPUs

 Areas of improvement
 The Resource Manager establishes a 1-to-1 mapping between an

accelerator and its virtual counterpart.

 Data-driven control flow is not handled using asynchronous calls

 Functions that do not comply with regular compiled/XLA suffer from
control-plane latency

 Unexplored avenue for optimizing accelerator mapping

15

PaLM Study Case

540 billion parameters

6144 TPU v4 chips

2 months of training with PATHWAYS

Results learnt on hundreds of language
semantics benchmarks

Outperforms average human on BIG-bench
benchmark

16

Questions?

17

References

 Barham, Paul, et al. "Pathways: Asynchronous distributed dataflow
for ML." Proceedings of Machine Learning and Systems 4 (2022): 430-
449.

 MLSys22: https://mlsys.org/virtual/2022/oral/2146
 Clarke, Lyndon, Ian Glendinning, and Rolf Hempel. "The MPI

message passing interface standard." Programming environments
for massively parallel distributed systems. Birkhäuser, Basel, 1994. 213-
218.

 Chowdhery, Aakanksha, et al. "Palm: Scaling language modeling
with pathways." arXiv preprint arXiv:2204.02311 (2022).

18

https://mlsys.org/virtual/2022/oral/2146

	Pathways: Asynchronous Distributed Dataflow for ML��Paul Barham Aakanksha Chowdhery Jeff Dean Sanjay Ghemawat Steven Hand Dan Hurt Michael Isard Hyeontaek Lim Ruoming Pang Sudip Roy Brennan Saeta Parker Schuh Ryan Sepassi Laurent El Shafey Chandramohan A. Thekkath �Yonghui Wu
	Problem Statement
	Background
	Single-Controller Architecture
	Multi-Controller Architecture
	Pathways runtime
	Insightful findings!
	Sequential dispatch strategy
	Parallel dispatch
	Slide Number 10
	Slide Number 11
	Implementation for JAX
	Evaluation
	Evaluation
	Review
	PaLM Study Case
	Questions?
	References

