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Problem Statement

 Co-evolution across…
 ML algorithms, especially Deep Learning 

 Hardware resources 

 Distributed ML systems

 SOTA ML orchestration software
 Single Program Multiple Data 

 Lockstep synchronised as per MPI (Clarke et. al, 1994)

 Prone to “overfitting” the underlying accelerator profile 
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Background 

 Multi-controller Architecture
 Tools such as PyTorch and JAX

 Assume exclusive ownership of the underlying hardware profile 

 Coordination primitives are restricted 

 Robust choice for building supercomputers due to PCIe dispatch

 Single-controller Architecture 
 Spark, TF, MapReduce 

 High dispatch latency since workers communicate via DCN 

 Hard to scale up horizontally due to controller coordination overhead

 Flexible model and virtualization opportunities
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Single-Controller 
Architecture
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 Dataflow graph is split into 
subgraphs 

 Work is dispatched to hosts via 
the datacentre network 

 What happens if we add an 
accelerator?

Unless otherwise noted, the figures in this presentation are
taken from P. Barham, et al.: Pathways: Asynchronous
Distributed Dataflow for ML, MLSys, 2022. (Conference
presentation/ manuscript submission to MLSys 2022)



Multi-Controller 
Architecture
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 The client is cloned across 
multiple processes

 Stepwise lock based on Single 
Program Multiple Data

 Restrictive in terms of resource 
ownership and communication

 Efficient horizontal scaling!



Pathways runtime

 Distributed ML runtime for cluster-wide orchestration.
 Single-controller architecture 

 Contributions 
 Sharded dataflow model with asynchronous operators 

 Decoupling between the control-plane and the data-plane 

 Asynchronous dispatch for masking single-controller latency

 Gang-scheduling for expressive non-SPMD computations 

 Cluster-wide resource managing and virtualization for heterogenous 
accelerator scale-up (up to islands of TPUs!)
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Insightful findings!

 Machine Learning workloads are historically “free” from complex 
data-driven control flow 

 A high-percentage of functions classify as Accelerated Linear 
Algebra (XLA) computations
 Functional data-driven conditions with predictable resource  

consumption for either branch 

 Bounded loops with early termination 

 Input and output types and shapes are known a priori 
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Sequential dispatch 
strategy

 Brute force conversion from 
dataflow to an asynchronous 
enqueuing strategy 

 Reduce dispatch time over 
DCN but accelerators 
outperform queueing 

 The bottleneck is in the 
control plane
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Parallel dispatch

 Control-plane latency is 
masked by accelerator 

 Futures are sent in parallel 
across hosts via DCN

 Data is sent to the input 
buffer address after 
computation ends via ICI

 What happens if there’s 
data-driven control? 
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Implementation for 
JAX

 Why not Jax?
 Multi-controller architectures 

are fit for one TPU pod. 
 Can we run unmodified JAX 

code? 
 Tracer @pw.program 
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Evaluation
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Evaluation
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Review

 Strengths and Impact
 Aims to introduce a new era of distributed ML frameworks that revert to 

the single-controller architecture

 Efficient attempt to coordinate multiple islands of TPUs

 Areas of improvement 
 The Resource Manager establishes a 1-to-1 mapping between an 

accelerator and its virtual counterpart. 

 Data-driven control flow is not handled using asynchronous calls 

 Functions that do not comply with regular compiled/XLA suffer from 
control-plane latency

 Unexplored avenue for optimizing accelerator mapping 
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PaLM Study Case

540 billion parameters 

6144 TPU v4 chips 

2 months of training with PATHWAYS 

Results learnt on hundreds of language 
semantics benchmarks

Outperforms average human on BIG-bench 
benchmark 
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Questions?
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