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Problem Statement

 Co-evolution across…
 ML algorithms, especially Deep Learning 

 Hardware resources 

 Distributed ML systems

 SOTA ML orchestration software
 Single Program Multiple Data 

 Lockstep synchronised as per MPI (Clarke et. al, 1994)

 Prone to “overfitting” the underlying accelerator profile 
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Background 

 Multi-controller Architecture
 Tools such as PyTorch and JAX

 Assume exclusive ownership of the underlying hardware profile 

 Coordination primitives are restricted 

 Robust choice for building supercomputers due to PCIe dispatch

 Single-controller Architecture 
 Spark, TF, MapReduce 

 High dispatch latency since workers communicate via DCN 

 Hard to scale up horizontally due to controller coordination overhead

 Flexible model and virtualization opportunities
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Single-Controller 
Architecture
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 Dataflow graph is split into 
subgraphs 

 Work is dispatched to hosts via 
the datacentre network 

 What happens if we add an 
accelerator?

Unless otherwise noted, the figures in this presentation are
taken from P. Barham, et al.: Pathways: Asynchronous
Distributed Dataflow for ML, MLSys, 2022. (Conference
presentation/ manuscript submission to MLSys 2022)



Multi-Controller 
Architecture
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 The client is cloned across 
multiple processes

 Stepwise lock based on Single 
Program Multiple Data

 Restrictive in terms of resource 
ownership and communication

 Efficient horizontal scaling!



Pathways runtime

 Distributed ML runtime for cluster-wide orchestration.
 Single-controller architecture 

 Contributions 
 Sharded dataflow model with asynchronous operators 

 Decoupling between the control-plane and the data-plane 

 Asynchronous dispatch for masking single-controller latency

 Gang-scheduling for expressive non-SPMD computations 

 Cluster-wide resource managing and virtualization for heterogenous 
accelerator scale-up (up to islands of TPUs!)
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Insightful findings!

 Machine Learning workloads are historically “free” from complex 
data-driven control flow 

 A high-percentage of functions classify as Accelerated Linear 
Algebra (XLA) computations
 Functional data-driven conditions with predictable resource  

consumption for either branch 

 Bounded loops with early termination 

 Input and output types and shapes are known a priori 
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Sequential dispatch 
strategy

 Brute force conversion from 
dataflow to an asynchronous 
enqueuing strategy 

 Reduce dispatch time over 
DCN but accelerators 
outperform queueing 

 The bottleneck is in the 
control plane
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Parallel dispatch

 Control-plane latency is 
masked by accelerator 

 Futures are sent in parallel 
across hosts via DCN

 Data is sent to the input 
buffer address after 
computation ends via ICI

 What happens if there’s 
data-driven control? 
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Implementation for 
JAX

 Why not Jax?
 Multi-controller architectures 

are fit for one TPU pod. 
 Can we run unmodified JAX 

code? 
 Tracer @pw.program 
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Evaluation
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Evaluation
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Review

 Strengths and Impact
 Aims to introduce a new era of distributed ML frameworks that revert to 

the single-controller architecture

 Efficient attempt to coordinate multiple islands of TPUs

 Areas of improvement 
 The Resource Manager establishes a 1-to-1 mapping between an 

accelerator and its virtual counterpart. 

 Data-driven control flow is not handled using asynchronous calls 

 Functions that do not comply with regular compiled/XLA suffer from 
control-plane latency

 Unexplored avenue for optimizing accelerator mapping 
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PaLM Study Case

540 billion parameters 

6144 TPU v4 chips 

2 months of training with PATHWAYS 

Results learnt on hundreds of language 
semantics benchmarks

Outperforms average human on BIG-bench 
benchmark 
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Questions?
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